
a product of MVTec

Quick Guide

HALCON 19.11 Progress

A quick access to the functionality of HALCON, Version 19.11.0.0

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise, without prior written permission of the publisher.

Copyright © 2003-2019 by MVTec Software GmbH, München, Germany MVTec Software GmbH

Protected by the following patents: US 7,062,093, US 7,239,929, US 7,751,625, US 7,953,290, US 7,953,291, US 8,260,059,
US 8,379,014, US 8,830,229. Further patents pending.

Microsoft, Windows, Windows Server 2008/2012/2012 R2/2016, Windows 7/8/8.1/10, Microsoft .NET, Visual C++, and Visual
Basic are either trademarks or registered trademarks of Microsoft Corporation.
Linux is a trademark of Linus Torvalds.
macOS and OpenCL are trademarks of Apple Inc.
NVIDIA, CUDA, cuBLAS, and cuDNN are either trademarks or registered trademarks of NVIDIA Corporation.
OpenGL is a trademark of Silicon Graphics, Inc.

All other nationally and internationally recognized trademarks and tradenames are hereby recognized.

More information about HALCON can be found at: http://www.halcon.com/

http://www.halcon.com/

Contents

1 Introducing HALCON 5
1.1 Key Features . 6
1.2 Who Should Use HALCON? . 6
1.3 Required Knowledge . 7
1.4 Getting Started with HALCON . 7
1.5 Where to Get More Information . 7

2 How to Develop Applications with HALCON 9
2.1 A Look Under the Surface of HALCON: Architecture and Data Structures 10

2.1.1 HALCON Operators . 11
2.1.2 Parameters and Data Structures . 11
2.1.3 HALCON and Parallel Programming . 14
2.1.4 HALCON supports Compute Devices . 14
2.1.5 HALCON XL . 15
2.1.6 Image Acquisition . 15
2.1.7 I/O devices . 15

2.2 Quick Start with HDevelop . 16
2.3 Using HALCON Within Programming Languages . 17

2.3.1 C++ . 17
2.3.2 C# and Visual Basic .NET . 17
2.3.3 C . 18

2.4 Extending HALCON . 18
2.4.1 Extension Packages (User-Defined Operators) . 18
2.4.2 Image Acquisition Interfaces . 18
2.4.3 I/O Device Interfaces . 18

2.5 Limitations . 19
2.5.1 General Limitations . 19
2.5.2 Limitations Related to Compute Devices . 19
2.5.3 Limitations Related to Image Acquisition . 20
2.5.4 Limitations Related to OpenGL . 20
2.5.5 Limitations Related to Extension Packages . 20

3 Industries 21
3.1 Automobile Parts And Manufacturers . 22

3.1.1 Locate Car Door . 22
3.2 Electric Components And Equipment . 23

3.2.1 Check the State of a Dip Switch . 23
3.2.2 Inspect Power Supply Cables . 23

3.3 Agriculture, Food . 24
3.3.1 "Best Before" Date . 24

3.4 Health Care And Life Science . 24
3.4.1 Analyzing Particles . 24
3.4.2 Angiography . 24

3.5 Iron, Steel And Metal . 25
3.5.1 Inspect Cast Part . 25

3.6 Machinery . 26
3.6.1 Reading Engraved Text . 26
3.6.2 Inspecting the Contours of a Tool . 27

3.6.3 Locating a Pipe Wrench in Different States . 27
3.7 Packaging . 28

3.7.1 Check Mixed Blister . 28
3.7.2 Locate Cookie Box . 29

3.8 Photogrammetry And Remote Sensing . 30
3.8.1 Extracting Forest Features from Color Infrared Image . 30
3.8.2 Segmenting a Color Image . 30
3.8.3 Extract Roads . 31

3.9 Printing . 32
3.9.1 Reading Bar Codes on a Toner Cartridge . 32

3.10 Rubber, Synthetic Material, Foil . 32
3.10.1 Checking a Boundary for Fins . 32

3.11 Semiconductors . 33
3.11.1 Bonding Balls . 33
3.11.2 Inspecting an IC Using Fuzzy Measuring . 33
3.11.3 Measuring Leads of a Moving IC . 34
3.11.4 Creating a Mosaic Image . 34
3.11.5 Locating Board Components by Color . 35

3.12 Solar, Renewable Energy, Recycling . 36
3.12.1 Inspect Solar Cells . 36

4 Application Areas 37
4.1 Identification With Bar Codes . 38

4.1.1 Reading a Bar Code on a CD . 38
4.2 Identification With Data Codes . 38

4.2.1 Reading 2D Data Codes on Chips . 38
4.3 Completeness Check . 39

4.3.1 Inspect Razor Blades . 39
4.4 Measuring And Comparison 2D . 40

4.4.1 Inspect IC . 40
4.5 Measuring And Comparison 3D . 41

4.5.1 Inspect IC . 41
4.6 Optical Character Recognition . 42

4.6.1 Reading Forms . 42
4.7 Position Recognition 2D . 43

4.7.1 Locate Components on a PCB . 43
4.8 Position Recognition 3D . 44

4.8.1 Get 3D Poses of Work Sheets . 44
4.9 Object Recognition 2D . 45

4.9.1 Distinguishing coins . 45
4.10 Object Recognition 3D . 46

4.10.1 Find 3D Clamps . 46
4.11 Robot Vision . 47

4.11.1 Grasp Nut . 47
4.12 Print Inspection . 48

4.12.1 Inspect a Printed Logo . 48
4.13 Surface Inspection . 49

4.13.1 Surface Scratches . 49
4.14 Traffic . 50

4.14.1 Detect Road Signs . 50

Introducing HALCON 5

Chapter 1

Introducing HALCON

HALCON defines the state of the art in machine vision software. It provides a comprehensive vision library and
is always based on the latest and most advanced technology. Whatever your task, HALCON will solve it, fast and
with highest accuracy.

Vision Development Environment

A professional image processing tool must be more than just a library of image processing operators. Solving
image processing tasks is just one part of a complete solution, which comprises other software components like
process control or database access, and hardware components from illumination to image acquisition devices and
many other mechanical components. Therefore, it is important that the image processing system is easy to use and
can be integrated into the development cycle in a flexible manner.

To achieve this, HALCON takes care of all important aspects:

• The software development is supported by HALCON’s IDE (integrated development environment), consist-
ing of HDevelop and HDevEngine. HDevelop is a highly interactive development tool that enables a quick
development of image processing tasks. Via HDevEngine, you can directly execute HDevelop programs and
procedures from your C++, C#, Visual Basic, or C application. As an alternative, HDevelop can also export
programs and procedures in your programming language.

• The problem-oriented documentation covers all levels from a quick access to important information up to a
detailed discussion of advanced topics.

• These descriptions are combined with hundreds of examples for an intuitive understanding of the solutions,
which can serve as templates to shorten the development time.

• Last but not least, HALCON provides open interfaces for efficient data exchange, to integrate own operators,
or to access specialized hardware round off the system.

Vision Library

HALCON fulfills all requirements of a professional vision library:

• It comprises methods for all standard and advanced types of image processing from image acquisition from
many different devices up to the advanced shape-based matching.

• Apart from image processing functionality, HALCON provides tools that are typically needed in the context
of machine vision applications, e.g., for the communication via sockets or the serial interface, file handling,
data analysis, arithmetic operations, or classification.

• HALCON offers flexible ways of parallelization to exploit multi-processor or multi-core hardware to speed
up an application.

• HALCON can handle images larger than 32 768 x 32 768 (HALCON XL).

• The HALCON library that is used in an application will not be visible to the end user and requires only
minimum resources in an installation, which makes it perfect for OEM developments.

In
tr

od
uc

tio
n

6 Introducing HALCON

1.1 Key Features

Leading-Edge Technologies

In addition to the full set of standard machine vision methods, HALCON offers functionality that is outstanding
in the field of machine vision libraries, e.g., 3D camera calibration, shape-based and component-based matching,
subpixel-precise edge and line extraction, subpixel contour processing, 3D matching, arbitrary regions of interest,
and much more.

Apart from this, many methods that are known from other libraries are offered with a much better performance.
An example for this is the morphology, which is up to 100 times faster than in other products, and at the same time
offers much more flexibility.

One Software for All Applications

Thanks to its more than 2000 operators, HALCON is at home in all areas of research, development, and production
where images are processed and analyzed. Numerous customers all over the world already use HALCON to solve
their machine vision tasks.

Protection of Investment

By choosing HALCON, you choose independence: Switch to another operating system? HALCON supports a
wide range of Windows, Linux, and macOS platforms. Migrate your applications from C++ to C#? HALCON can
be used within various programming languages and environments. Your application grows and needs more com-
puting power? Switch to a multi-processor or multi-core computer and HALCON will automatically parallelize
its execution (see section 2.1.3 on page 14). Last but not least, you are free to choose the image acquisition hard-
ware that fulfills your requirements, because HALCON provides ready-to-use interfaces to hundreds of industrial
cameras and frame grabbers, including GenICam, GigE Vision, and IIDC 1394.

Rapid Prototyping

In many cases it is important to determine quickly if and how a problem can be solved. With HDevelop, HAL-
CON’s interactive development environment, you can rapidly develop machine vision applications. Besides being
a fully-fledged program interpreter with debug functions, HDevelop assists you actively, e.g., by suggesting oper-
ators and by automatically visualizing the result of an operation. With the help of integrated tools you can inspect
images and results and quickly find suitable parameter values that solve your vision task.

Open Architecture

HALCON offers a comprehensive vision library but does not claim to be all-encompassing. Therefore, it is based
on an open architecture. Thus, you can extend HALCON by integrating your own vision functionality in form of
new operators (see section 2.4.1 on page 18). And if you want to use an image acquisition device that HALCON
does not yet support you can use the images directly or create an image acquisition interface for it.

1.2 Who Should Use HALCON?

To put it shortly: everybody in need of a machine vision software.

HALCON is especially designed to be used by:

• OEMs to develop machines that include vision components, e.g., for chip or print inspection, or to develop
software solutions, e.g., for car plate reading or cell analysis,

• System integrators to develop customer-specific machine vision solutions,

• VARs that bundle HALCON with other products, and

• Research groups and universities that profit from the unbeatable completeness of the library, typically in
combination with the integrated development environment HDevelop for intuitive prototyping.

1.3 Required Knowledge 7

1.3 Required Knowledge

Image Processing

Of course, the more familiar you are with the terminology and the standard methods of image processing, the
easier it is to apply HALCON to solve your machine vision task. The Solution Guide I guides you from the various
application areas to HALCON’s machine vision methods and introduces them with examples. As an alternative,
you can start out in chapter 3 on page 21 or chapter 4 on page 37, which present examples from various industries
and application areas and include references to more information about the examples.

Programming

If you want to use HALCON via a programming language, you must be familiar with this language and the
corresponding development tools. The Programmer’s Guide concentrates on describing HALCON’s language
interfaces, i.e., the provided data structures and classes, how to call operators, etc.

Operating System

You will need basic knowledge about your platform’s operating system in order to install HALCON and the
corresponding license.

1.4 Getting Started with HALCON

You can download HALCON from MVTec’s web server under http://www.mvtec.com/download. Note that
you must first register before downloading the software. Installation instructions are provided on the download
page.

To evaluate the full power of HALCON you can obtain a temporary license from your local distributor free of
charge. Detailed information about licensing can be found in the Installation Guide.

On a Windows system, you can start HDevelop from the start menu. On a Linux system, execute hdevelop from
a shell. On macOS, start HDevelop from the Applications folder.

1.5 Where to Get More Information

• This Manual

Information about developing applications in HDevelop or in a programming language can be found in
chapter 2 on page 9.

The following two chapters present HALCON example programs sorted by machine vision industry (see
chapter 3 on page 21) and by application area (see chapter 4 on page 37), respectively.

• Solution Guide I

This manual describes the main machine vision methods and how to use them in HALCON, including many
examples. Chapter 1 on page 15 guides you from the various application areas to suitable methods.

• Installation Guide

This manual explains the different licensing methods and supplies detailed information about installing,
upgrading, and uninstalling HALCON.

• HDevelop User’s Guide

This manual is your guide to using HDevelop, HALCON’s interactive development environment. It describes
the elements of its graphical user interface, the language used in HDevelop programs, how to export programs
to other programming languages, and more.

• Programmer’s Guide

If you want to use HALCON from a programming language consult this manual for detailed information
about the provided interfaces and their data types, classes, etc. Furthermore, this manual explains how to use
HDevEngine to execute HDevelop programs and procedures from a programming language.

In
tr

od
uc

tio
n

http://www.mvtec.com/download

8 Introducing HALCON

• Extension Package Programmer’s Manual

This manual explains how to integrate your own functionality into HALCON via the so-called extension
packages.

• Solution Guide II

Currently, this guide consists of the following Solution Guides:

Solution Guide II-A (Image Acquisition): This manual shows how to use simple and complex configurations
of image acquisition devices, explains the various timing modes, and more.

Solution Guide II-B (Matching): Here you can find out about how to use HALCON’s 2D and perspective
matching methods to find objects based on a single model image and to locate them with subpixel accuracy.

Solution Guide II-C (2D Data Codes): This manual shows how to use HALCON’s 2D data code reader.

Solution Guide II-D (Classification): This manual shows how to classify images or regions with different
types of classifiers.

• Solution Guide III

Currently, this guide consists of the following Solution Guides:

Solution Guide III-A (1D Measuring): This manual shows how to detect edges and how to measure their
position and distance along lines and arcs.

Solution Guide III-B (2D Measuring): This manual shows how to measure 2D features like position, orien-
tation, angles, and generally the dimensions of and the relations between objects.

Solution Guide III-C (3D Vision): This manual is your gate into the world of 3D vision.

• Reference Manuals

The reference of all HALCON operators is available in HDevelop, C++, C#, and C syntax.

• Release Notes

If you have used an earlier version of HALCON, please take a look at the release notes, which can be found
in the file release_notes.html in the directory into which you have installed HALCON.

• Example Programs

HALCON provides an extensive set of example programs, not only for HDevelop but also for different
programming languages. These examples can be found in the directory denoted by the environment variable
%HALCONEXAMPLES% or, if the variable is not set, in the subdirectory examples of the folder into which you
have installed HALCON.

• Support

Your local distributor is the competent contact for all questions about HALCON. Please take a look at
http://www.halcon.com/support for the current list of distributors.

• Training Seminars

Some distributors offer training seminars where you can learn more about HALCON (see
http://www.halcon.com/support/training.html for a list of upcoming seminars).

How to Develop Applications with HALCON 9

Chapter 2

How to Develop Applications with
HALCON

HALCON offers many ways for the application development. But to make full use of the architecture the mode
depicted in figure 2.1 is recommended.

• Image inspection, prototyping of the vision method, and the final development of the vision method are
performed within HDevelop. Here, the program is structured into procedures that each represent one sub-
task like initialization, processing, or cleanup. The main procedure is used only as a test environment to call
the procedures by passing images and receiving the results.

• The complete application is developed in a programming environment like Microsoft Visual Studio. There
are two ways to integrate the HDevelop procedures: Either you export the procedures to your programming
language and then import them, e.g., via an include statement. Alternatively, you can directly execute the
HDevelop procedures using HDevEngine. The user interface and other necessary code is implemented using
the normal mechanisms offered by the given language. Finally, the project is compiled and linked.

• Together with the HALCON library, the generated application represents the solution that can, e.g., be loaded
onto the destination machine or sent to a customer.

The three-step approach has several advantages:

• Whenever needed, the vision part can easily be optimized or extended because HDevelop offers much better
inspection and debugging facilities for image data than the standard programming environments.

• If you are using HDevEngine, you do not even need to compile and link your application after a change in the
HDevelop program (if you did not change the signatures of the procedures). If you are using exported code,

C
o

d
e E

xp
o

rt
H

D
evE

n
g

in
e

HALCON Library

C
o

m
p

ilatio
n

Application

Prototyping

Method Development

HDevelop

Further Tools

User Interfaces

Visual Studio

Figure 2.1: Three-step approach for the application development.

D
ev

el
op

m
en

t

10 How to Develop Applications with HALCON

you typically do not need to modify the rest of the application but only to compile and link the application
again.

• Because the vision part is separated from the general code, it can easily be executed in a stand-alone manner.
Furthermore, it can be given to others without the need to pass the whole project. In the case of support
questions, the HDevelop program with one or more images can quickly be sent to the distributor.

• Finally, a reuse for other architectures like Linux can easily be achieved because HDevelop runs in exactly
the same manner on multiple operating systems.

For basic information on the prototyping with HDevelop see section 2.2 on page 16. How to export code from
HDevelop is explained in the HDevelop User’s Guide in chapter 10 on page 323. A brief introduction to using
HALCON in a programming environment can be found in section 2.3 on page 17. How to use HDevEngine is
explained in the Programmer’s Guide in part V on page 115. For using a programming environment like Microsoft
Visual C++, see the relevant Microsoft documentation.

Note that in both cases (HDevEngine or export), the application contains “only” the HALCON functionality –
HDevelop’s powerful development tools like the assistants or other GUI elements cannot be accessed from a
programming language.

2.1 A Look Under the Surface of HALCON: Architecture and Data
Structures

HALCON’s architecture, data structures, and internal mechanisms were developed according to the philosophy
that they should be

1. efficient

2. open

3. standardized

4. self-describing

Efficient means that the execution time of each HALCON operator is as short as possible. Furthermore, the
operator design has been made such that combinations that are standard sequences or more complex tasks remain
efficient.

The open architecture is important in two respects: First, you can use HALCON from many different programming
languages. Passing external data to HALCON and accessing internal data of HALCON is also supported. Finally,
there are transparent interfaces to integrate user-defined operators and non-standard image acquisition devices.
This open architecture allows, e.g., a simple update to a new version of an image acquisition interface without
changing the installation of HALCON.

Standardized means that the signatures, naming, and usage of operators and data structures follow strict rules. This
allows a quick learning combined with few errors.

Finally, HALCON provides detailed information about each operator and their parameters not only in the docu-
mentation but also online via specialized operators.

HALCON’s basic architecture is depicted in figure 2.2. The main part is the image processing library, which
consists of a huge number of operators. You can also develop your own operators in form of a so-called Extension
Package. You use the operators in your application via the so-called language interfaces like HALCON/C++.
These are libraries which allow a direct use of the operators in the typical programming style of the different
programming languages. HDevelop also uses a language interface, but this is transparent to the user.

For the access of image acquisition devices, HALCON provides a common interface, the so-called Image Acqui-
sition Interface. It allows to use quite different acquisition devices in a common way. The libraries containing the
device-specific implementations are loaded dynamically when needed.

Similarly, I/O devices are accessed through device-specific I/O device interfaces. These interfaces allow to access
different I/O devices in a common way. The libraries are loaded dynamically when needed.

Below, we take a closer look at HALCON’s operators and data structures.

2.1 A Look Under the Surface of HALCON: Architecture and Data Structures 11

Packages
ExtensionHALCON

Image Processing Library

HDevelop

HDevEngine HALCON/C

C C++

HALCON/C++

C# VB.NET

HALCON/.NET

I/O InterfaceImage Acquisition Interface

Boards Cameras 3D Cameras DirectShow TWAIN I/O Devices

OPC/OPC UAUSB3 VisionGigE VisionGenICamCoaXPressCamera Link

HALCON Applications

Figure 2.2: Basic architecture of HALCON.

2.1.1 HALCON Operators

Whenever any kind of functionality is used from the HALCON library, it is done via an operator. The current
version has more than 2000 of these operators. Most of them comprise multiple methods, which are selected via
parameters. A full list of all operators can be found in the Reference Manuals or in the dialog Operators of
HDevelop. Important features of operators are:

• There is no hierarchy among operators. From the software architecture point of view, all operators are on the
same level.

• Of course, there are logical groups of operators. This can directly be seen by the classes offered for C++ and
.NET, where operators processing the same data type are used as members of the corresponding classes.

• Operators have standardized rules for ordering input and output parameters (see section 2.1.2).

• The design of operators follows the rules of the open architecture. Therefore, you can create your own
operators and thus extend HALCON, while getting the same look-and-feel for your own operators (see
section 2.4.1 on page 18).

• Many operators can make transparent use of automatic parallelization, which allows an easy way of speeding
up the program when using large images on a multi-processor or multi-core computer (see section 2.1.3 on
page 14).

2.1.2 Parameters and Data Structures

Philosophy:

• HALCON has two basic types of parameters: iconic data (images, regions, XLD contours) and control data
(integers, strings, handles, etc.), see below.

D
ev

el
op

m
en

t

12 How to Develop Applications with HALCON

• The parameters for each operator are arranged in a standardized order: input iconic, output iconic, input
control, and output control. Not all of the groups might be needed for a given operator. However, the order
remains the same.

• Each operator has a self-describing interface. This description contains, besides the standard documentation,
information about parameters like types or value lists, which can be accessed online in the Reference Manuals
or in the dialog Operators of HDevelop.

• Input parameters of operators are never modified, which results in a very clear and simple semantics.
There are only three operators that do not follow this principle to ensure maximum performance (namely
set_grayval, overpaint_gray, and overpaint_region).

• The open architecture allows to access internal data and to integrate external data.

• All necessary data structures for 2D image processing like (multi-channel) images, regions, contours, tuples
(a kind of array), etc. are directly supported using an extremely efficient implementation.

A detailed description of the low-level data structures can be found in the Extension Package Programmer’s Man-
ual, chapter 4 on page 49. For the corresponding types and classes in the supported programming languages see
the Programmer’s Guide.

2.1.2.1 Images

Philosophy:

• Images belong to the iconic data.

• The major part of an image are the channels, i.e., matrices containing the gray values of various pixel types
(see below).

• For each image, the so-called domain specifies which part of the image is processed. It thus acts as a region
of interest (ROI). The domain is a HALCON region (see section 2.1.2.2) and can therefore be defined very
flexibly (from a simple rectangle to a set of unconnected pixels, see below). For details about ROI handling
see the Solution Guide I, Region Of Interest on page 27.

Pixel Data

An almost arbitrary content is possible, from standard 8-bit gray values to floating-point numbers describing deriva-
tives.

For integer values one, two, and four byte versions (with and without sign) are available. Besides this, floating
point and complex images are available. Finally, special data types for describing edge directions or hue values are
supported.

Image Channels

A channel corresponds to an image matrix. Each image can have up to 65535 channels. All channels of an image
have the same size.

Typical cases are: single-channel gray value image, color image with three channels (e.g., RGB), or a multi-channel
image from a multispectral sensor or as a result of texture filtering.

Coordinate Systems

The origin of an image lies in the center of the pixel in the upper left corner. The individual pixels are accessed
using row and column coordinates, like in a matrix. The coordinates range from (0,0) up to (height-1, width-1).

Note that because the origin lies in the center of the upper left pixel, the pixels’ corners have non-integer coor-
dinates. For example, the pixel in the upper left corner has the corner coordinates (-0.5, -0,5), (-0.5, +0.5), (0.5,
-0.5), and (0.5, 0.5).

2.1 A Look Under the Surface of HALCON: Architecture and Data Structures 13

2.1.2.2 Regions

Philosophy:

• Regions belong to the iconic data.

• A region is defined as a set of pixels. The pixels of a region do not need to be connected. This means that
even an arbitrary collection of pixels can be handled as a single region. With the operator connection a
region can be split into its so-called connected components, i.e., components consisting of connected pixels.

• The implementation of regions is based on an efficient implementation of the so-called runlength encoding.
This encoding has many advantages: low memory consumption, efficient processing, and easy handling of
regions of interest (domains).

• Because of the implementation based on runlength encoding, it is possible to have overlapping regions, e.g.,
as the result of a dilation of connected components. This would not be possible with a classical implementa-
tion based on label images.

• The coordinates of pixels inside a region are not limited to the coordinates of a given image, the region can
be larger than the image, possibly as the result of a dilation operation. Whether a region should be clipped
to the maximum image extents can be controlled using the operator set_system with the parameter value
’clip_region’.

Note that by default regions are clipped to the current image size. As long as no image has been created or
loaded, they are clipped to the default image size (HDevelop: 512×512; programming languages: 128×128).
To prevent an undesired clipping, we recommend to create or load an image before creating or loading
regions.

• The number of regions for an application is virtually unlimited.

2.1.2.3 XLDs

Philosophy:

• XLD is the abbreviation for eXtended Line Description and comprises all contour and polygon based data.

• XLDs belong to the iconic data.

• Subpixel-accurate operators like edges_sub_pix return the contours as XLD data.

• A contour is a sequence of 2D control points, which are connected by lines.

• Typically, the distance between control points is about one pixel.

• XLD objects contain, besides the control points, so-called local and global attributes. Typical examples for
these are, e.g., the edge amplitude of a control point or the regression parameters of a contour segment.

• Besides the extraction of XLD objects, HALCON supports further processing. Examples for this are the
selection of contours based on given feature ranges or the segmentation of a contour into lines, arcs, polygons
or parallels.

2.1.2.4 Handles

Philosophy:

• Handles belong to the control data.

• Handles are references to complex data structures, e.g., a connection to an image acquisition device or a
model for the shape-based matching. For efficiency and data security reasons, not the entire structure but
only the handle is passed between the operators.

• Handles are represented by a distinct control data type. They are magic values that must not be changed and
can differ from execution to execution and version to version.

• Handles are automatically cleared once all references in all tuples are overwritten.

• Examples where handles are used are graphics windows, files, sockets, image acquisition devices, OCR,
OCV, measuring, matching.

D
ev

el
op

m
en

t

14 How to Develop Applications with HALCON

2.1.2.5 Tuple Mode

Philosophy:

• Iconic and control data can contain single objects / values or multiple ones (so-called tuples). For example, a
control variable can contain none, one, or an arbitrary number of the basic data types (integers, floating-point
values, strings, handles), where the types of each element can be different.

• Most operators accept single values (simple mode) as well as multiple values (tuple mode). If, e.g., an oper-
ator like area_center is called with a single region, one value is returned for the area and the coordinates
of the center of the region. When the operator is called with multiple regions, tuples with the corresponding
number of values are returned instead. Thus, if you call area_center with four regions, it returns three
tuples (one for the area and two for the coordinates of the center), each containing four values corresponding
to the four regions.

• The index of control tuples range from 0 to the number of values minus 1. In contrast, the index of iconic
tuples starts with 1.

2.1.3 HALCON and Parallel Programming

HALCON supports parallel programming (e.g., multithreaded programs) by being thread-safe and reentrant. This
means that multiple threads can call a HALCON operator simultaneously.

Besides supporting parallel programming, HALCON automatically parallelizes operators if started on multi-
processor or multi-core hardware, e.g., a dual-Pentium board. The parallelization mechanism is based on dis-
tributing the data which has to be processed, i.e., the images, on multiple threads that run on different processors
(so-called data parallelism). For example, for a filtering operation on a four-processor board the image will be
split into four parts which will then be processed in parallel by four threads executing the (same) filtering oper-
ator. Together with HALCON’s philosophy for treating images and regions, this form of parallelization is very
efficient because images need not to be copied. The degree of parallelization is optimized online to minimize the
parallelization overhead. For example, very small images will not be processed in parallel, as the overhead would
surpass the parallelization speed-up. Moreover, not all HALCON operators lend themselves to parallelization.

Detailed information on parallel programming using HALCON can be found in the Programmer’s Guide, chapter 2
on page 13.

Note that HALCON is designed for shared-memory systems, i.e., systems in which multiple processors share a
common memory as it is the case for typical multi-processor or multi-core boards. The main reason is that only in
a shared-memory system threads can share the HALCON object database and do not need to copy images. This
limitation means that HALCON’s parallelization techniques are not suited to the use on workstation clusters or
other multi-processor or multi-core hardware that does not offer shared memory.

2.1.4 HALCON supports Compute Devices

HALCON supports GPU processing, which can speed up your application significantly. With HALCON, executing
code on the GPU is transparent, easy to use - just switch it on or off - and it is based on OpenCL and therefore
independent from manufacturers and not even limited to graphic cards.

We support current NVIDIA and AMD cards. Always install drivers meeting the system requirements.

Many HALCON operators support compute devices. To find out whether an operator supports compute devices
or not, please refer to the reference of the operator in the Reference Manual. If the operator supports compute
devices, like e.g., edges_sub_pix, this is noted in the section ’Parallelization’.

As mentioned before, GPU processing is very easy to use. The GPU is initialized with the operator
init_compute_device. GPU processing is switched on with activate_compute_device and switched off
with deactivate_compute_device.

Note that to compute on the GPU, the data will be transferred from the CPU to the GPU. Transferring data con-
sumes precious processing time. Therefore, in order to fully profit from GPU processing we recommend to

• use a high-end graphics card,

2.1 A Look Under the Surface of HALCON: Architecture and Data Structures 15

• use hardware with a high memory bandwidth, and

• design your program well, i.e., group as many GPU-supporting operations as possible, to reduce memory
transfers.

However, using compute devices does not always result in an improved runtime. Normal CPU processing may be
faster if

• your CPU is already very fast, especially when using multi-core system.

• you are using fast operators.

When computing on the GPU, by default, one graphics card will be used. You can, however, also use several
compute devices. In that case one thread is used per device.

Please refer to the Reference Manual for more information on the compute devices. Limitations of GPU processing
are documented in section 2.5.2 on page 19.

2.1.5 HALCON XL

HALCON is optimized for normal-sized images, i.e., images not larger than 32 768 x 32 768. However, in par-
ticular line scan camera applications often provide larger images, typically with the height exceeding 32 768. For
these applications, you can use HALCON XL, which by itself has no limitation for the image size.

However, there still are other limitations:

• If the image size exceeds 0.5 GB, you cannot process it on a 32 bit platform but must use a 64 bit operating
system.

• Independent of the used operating system, the available memory of your system might pose a limitation.

2.1.6 Image Acquisition

Currently, HALCON provides interfaces for more than 50 frame grabbers and hundreds of industrial cameras
(analog, Camera Link, USB 2.0, IEEE 1394, and GigE) in the form of dynamically loadable libraries (Windows:
DLLs; Unix-like systems: shared libraries). These libraries are installed together with the HALCON libraries.
Library names start with the prefix hAcq; the libraries ending with the suffix xl are used by HALCON XL.

In the following, we give a brief overview of the HALCON image acquisition interface; please refer to the Solution
Guide II-A for detailed information about this topic.

The HALCON image acquisition interface libraries form the bridge between software provided by the manufac-
turer of the image acquisition device and HALCON. They form a common, generic interface that requires a small
set of operators only.

If you successfully installed your image acquisition device, all you need to do to access it from HALCON is to
call the operator open_framegrabber, specifying the name of the image acquisition interface and some addi-
tional information, e.g., regarding the connected camera. Then, images can be grabbed by calling the operator
grab_image (or grab_image_async).

Please note that the HALCON image acquisition interfaces may change more frequently than the HALCON li-
brary itself. One reason for this is that MVTec continuously develops new interfaces; furthermore, if the software
provided by the manufacturers of image acquisition devices changes, e.g., if new features are integrated, the cor-
responding HALCON interfaces will be adapted. You can find the latest information together with downloadable
interfaces (including documentation) under http://www.mvtec.com/products/interfaces.

2.1.7 I/O devices

HALCON provides interfaces for several I/O devices (sometimes also referred to as I/O modules) to enable data
acquisition. These interfaces are available as dynamically loadable libraries (Windows: DLLs; Unix-like systems:
shared libraries). Library names start with the prefix hio; the libraries ending with the suffix xl are used by
HALCON XL.

D
ev

el
op

m
en

t

http://www.mvtec.com/products/interfaces

16 How to Develop Applications with HALCON

In the following, we give a brief overview of the HALCON I/O device interfaces. More information is available
for download from MVTec’s web server under http://www.mvtec.com/products/interfaces.

The HALCON I/O device interfaces provide unified access to different I/O devices using a small set of operators.
After you have installed your I/O device, a connection is established using the operator open_io_device, speci-
fying the name of the I/O device interface and optionally some device-specific parameters. Once the connection is
established, a transmission channel can be opened by calling open_io_channel. To read and write values on this
channel, use the operators read_io_channel and write_io_channel, respectively.

Please note that the HALCON I/O device interfaces may change more frequently than the HALCON library itself.
You can find the latest information together with downloadable interfaces (including documentation) under http:
//www.mvtec.com/products/interfaces.

2.2 Quick Start with HDevelop

HDevelop is a powerful integrated development environment for both prototyping and application development.
HDevelop is very easy to use. Below, you find a brief introduction. Detailed information about HDevelop can be
found in the HDevelop User’s Guide.

To start HDevelop under Windows, click on Start > Programs > MVTec HALCON > HDevelop. On Windows
8, start HDevelop from your start page. Under Linux, HDevelop is started from the shell by executing hdevelop.
Under macOS, HDevelop is started from the Applications folder.

To load an example, select the menu File > Open. This will open a file selection dialog that shows the main
directories of the HDevelop examples (under Windows). For beginners, we recommend to select an example from
the directory Applications. As an alternative, the menu File > Browse Examples ... can be used. Here, a
dialog is opened that allows you to select examples based on different categories instead of the actual location.

After loading the file, the corresponding program code is displayed in the program window. The used variables -
so far not instantiated - can be seen in the variable watch window. The program is now ready for execution.

Steps to run a program:

1. In the toolbar, click the button Run to execute the program. To continue at a stop statement, click Run again.

2. Besides the button Run, HDevelop provides a button to step through a program, executing single lines and
displaying the results immediately afterwards. The buttons Step Into and Step Out are useful if the
program contains procedures.

3. To rerun the complete program click the button Set program to initial state and then Run. To rerun
parts only, click with the mouse to the left of the desired program line so that the program counter (green
arrow) is repositioned. Now click Run.

Hints for understanding the program:

1. At the bottom of the main window, HDevelop provides a status bar. This displays useful information in
many cases. Especially during execution, when the program stops to visualize results or waits for a user
interaction corresponding instructions are given.

2. For information concerning individual program lines double click them so that the name of the applied
operator and its parameters are displayed in the operator/procedure window. There, the help button provides
specific information.

3. Many programs will automatically display relevant data in the graphics window. Manual visualization can
easily be achieved by double clicking on the icons in the variable watch window.

4. Some examples contain procedures. Program lines containing procedures are marked by the colors that are
specified in the menu Edit > Preferences > User Interfaces > Program Window. You can switch
between the procedures (including the main procedure) via the combo box Procedures in the program
window.

5. In many examples expressions like assignments, arithmetic operations (both often represented in the program
by “:=”), or control structures like loops occur. If you need help concerning the language used in HDevelop
please consult the HDevelop User’s Guide.

http://www.mvtec.com/products/interfaces
http://www.mvtec.com/products/interfaces
http://www.mvtec.com/products/interfaces

2.3 Using HALCON Within Programming Languages 17

Further hints for HDevelop:

1. Depending on the selected installation type, not all images used in an example program might be available.
In this case, we recommend to install the needed images.

2. Some programs use image acquisition devices for image acquisition or I/O device interfaces for data ac-
quisition. If the corresponding device is not available, an error message will be raised. In this case, we
recommend to either use another example or to modify the parameters to fit to the available hardware.

2.3 Using HALCON Within Programming Languages

As shown in figure 2.2 on page 11, HALCON provides so-called language interfaces. These are libraries that
enable you to call the operators and to use the data types of the HALCON library in an easy way. Two language
interfaces are designed for specific languages. These are the C and the C++ interfaces. In contrast, the .NET
interface can be used with different languages, e.g., with Visual Basic, or C#.

Independent of which programming language you choose, a suitable interface library (halconc.*, halconcpp.*,
halconx.*) together with the HALCON library (halcon.*) must be linked to the application. In addition to this, for
C and C++ the corresponding include files must be included. For .NET applications, the corresponding assembly
halcondotnet.dll must be referenced.

To start the development, we recommend to first check one of the ready-to-run example programs. Here, you can
see how the project must be set up and how operators and types are used.

For each language interface, the names of types, classes, the naming conventions of operators, etc. may differ to
be compliant with the typical rules that apply for the selected language. For details of the operator signatures for
HDevelop, please refer to the reference manual HALCON/HDevelop Operator Reference. The syntax of the other
programming languages (C++, .NET, and C) is available in the online help.

2.3.1 C++

The C++ interface is much more sophisticated than the C interface. Here, the advantages of C++ and object-
oriented programming are used, i.e., automatic type conversion, construction and destruction, or grouping functions
together with their data into classes. Like in the C interface, global functions for each HALCON operator are
provided for a procedural style of programming. Here, the classes HObject and HTuple are used. Furthermore,
operators can be used as members of classes like HDataCode2d, HMeasure, or HShapeModel. In addition, classes
like HImage or HRegion are used. For more information see the Programmer’s Guide, part II on page 29.

The following code shows a small excerpt of an example program to read an image and to display it in a graphics
window and apply some basic blob analysis.

HImage Mandrill("monkey");

HWindow(0, 0, 512, 512);

Mandrill.Display(w);

HRegionBright = (Mandrill >= 128);

HRegionArray Conn = Bright.Connection();

HRegionArray Large = Conn.SelectShape("area", "and", 500, 90000);

2.3.2 C# and Visual Basic .NET

C# and Visual Basic .NET use HALCON via the .NET interface.

Analogously to C++, two styles for programming are offered: procedural and object-oriented. For the procedural
style, the class HOperatorSet provides all HALCON operators, where HObject is used to handle iconic data
and HTuple is used for control data. For the object-oriented style, classes like HDataCode2d, HMeasure, or
HShapeModel are provided for the central functionality. In addition, classes for iconic data, e.g., HImage or
HRegion, are available. For more information see the Programmer’s Guide, part III on page 57

D
ev

el
op

m
en

t

18 How to Develop Applications with HALCON

The following code shows a small C# example program to read an image and apply some basic blob analysis.

HImage image = new HImage("monkey");

HRegion region;

region = image.Threshold(128, 255);

2.3.3 C

The C interface is the simplest interface supported by HALCON. Each operator is represented by either one or two
global functions where the operator name and the parameter sequence is identical to HDevelop. All operators are
available in a version that accepts tuples as input. These operators have names that start with "T_". Furthermore,
if an operator also accepts single parameters for all control parameters, a simplified operator that only uses basic
types (long, double, and char*) is provided. These operators have no "T_" prefix. Two types (Hobject and
Htuple) are offered for iconic and control data. Because C does not offer destructors, you have to free iconic data
by calling the operator clear_obj. To manipulate, create, destroy, and access tuples, macros are provided. For
more information see the Programmer’s Guide, part IV on page 87.

The following code shows a small excerpt of an example program to read an image and to display it in a graphics
window.

read_image(&Monkey, "monkey");

get_image_size(Monkey, &Width, &Height);

open_window(0, 0, Width, Height, 0, "visible", "", &WindowHandle);

disp_obj(Monkey, WindowHandle);

2.4 Extending HALCON

2.4.1 Extension Packages (User-Defined Operators)

HALCON may easily be extended by new operators. Although HALCON already contains more than 2000 op-
erators for various tasks, you may wish to implement new operators, e.g., in order to access a special hardware
or to implement an alternative algorithm. To do so, HALCON provides the Extension Package Interface, which
allows the integration of new operators (implemented in C) in the form of so-called extension packages. It contains
several predefined routines and macros for the easy handling of image data and memory objects in C. Once a new
operator has been successfully integrated, it can be used like any other HALCON operator. The Extension Package
Programmer’s Manual contains detailed information about extending the operator library.

2.4.2 Image Acquisition Interfaces

Using a similar mechanism, image acquisition interfaces are integrated using dynamic libraries. This allows you
to integrate unsupported image acquisition devices without further changes of the rest of the system. A description
how to create and integrate an image acquisition interface as well as a template source code that can be used as the
basis of an integration can be downloaded from MVTec’s web server under http://www.mvtec.com/products/
interfaces.

2.4.3 I/O Device Interfaces

I/O interfaces are integrated using dynamic libraries. This allows you to integrate unsupported I/O devices without
further changes of the rest of the system. A description how to create and integrate an I/O device interface as well
as a template source code that can be used as the basis of an integration can be downloaded from MVTec’s web
server under http://www.mvtec.com/products/interfaces.

http://www.mvtec.com/products/interfaces
http://www.mvtec.com/products/interfaces
http://www.mvtec.com/products/interfaces

2.5 Limitations 19

2.5 Limitations

2.5.1 General Limitations

With HALCON XL (see section 2.1.5 on page 15), many of HALCON’s previous limitations have been removed.
Below, we list the remaining ones that are relevant for typical application development with HALCON.

• String processing:

– The HALCON library does not handle multibyte characters internally. File names containing multibyte
characters are supported after calling set_system(’filename_encoding’,’utf8’).

• Processing of NaNs:

– Due to performance reasons, the HALCON library does not check for NaNs in input data. Using such
input can lead to unexpected output or even crashes.

• Maximum image size:

– HALCON: 32 768×32 768

– HALCON XL: 1 073 741 824×1 073 741 824 (230 × 230)

• Maximum number of channels per image:

– The number of channels per image is limited to 65535.

Range for coordinates:

– HALCON: from -32 768 to +32 767

– HALCON XL: from -1 073 741 824 to 1 073 741 823 (-230 to 230 − 1)

• Maximum number of windows: 600

2.5.2 Limitations Related to Compute Devices

Currently, the following limitations apply to the use of compute devices (see section 2.1.4 on page 14).

Operators that are based on texture are limited to the maximum size of the graphics card. Currently this limit is
8192×8192. This is relevant for the following operators:

• projective_trans_image and projective_trans_image_size,

• affine_trans_image and affine_trans_image_size,

• polar_trans_image, polar_trans_image_inv, and polar_trans_image_ext,

• rotate_image,

• mirror_image,

• map_image,

• image_to_world_plane, and

• change_radial_distortion_image.

Further limitations are listed below.

• All other operators are restricted to the maximum allocated block size, e.g. 200 MB on the Tesla C2050.

• edges_sub_pix and lines_gauss are not Open CL accelerated for HALCON XL.

• edges_sub_pix and lines_gauss need a lot of memory on the compute device.

D
ev

el
op

m
en

t

20 How to Develop Applications with HALCON

2.5.3 Limitations Related to Image Acquisition

• Maximum number of acquisition interfaces: 128

• Maximum number of open handles per acquisition interface: 256

• Maximum number of interface-specific parameters: 2048

2.5.4 Limitations Related to OpenGL

Operators using OpenGL for visualization (e.g., disp_object_model_3d) require OpenGL 2.1, GLSL 1.2,
and the OpenGL extensions "GL_EXT_framebuffer_object" and "GL_EXT_framebuffer_blit". There-
fore, those operators cannot be used via Windows Remote Desktop or SSH forwarding. Other operators, like
find_shape_model_3d), have an optimized implementation when OpenGL is available. Which operators benefit
from OpenGL can be found in the reference documentation of the corresponding operators. To figure out which
OpenGL features are available and offered by the driver, HALCON opens a hidden OpenGL window during ini-
tialization when the first HALCON operator is called. Thus, if the system has defective OpenGL drivers installed,
HALCON may crash during initialization. To work around this issue, HALCON can be told to ignore OpenGL
entirely by defining and setting the system environment variable "HALCON_NO_OPENGL" to 1.

2.5.5 Limitations Related to Extension Packages

• maximum number of parameters:

iconic input parameters: 9
iconic output parameters: 9
control input parameters: 20
control output parameters: 20

Industries 21

Chapter 3

Industries

This chapter introduces example programs from various industries:

• Automobile Parts And Manufacturers (section 3.1),

• Electric Components And Equipment (section 3.2 on page 23),

• Agriculture, Food (section 3.3 on page 24),

• Health Care And Life Science (section 3.4 on page 24),

• Iron, Steel And Metal (section 3.5 on page 25),

• Machinery (section 3.6 on page 26),

• Packaging (section 3.7 on page 28),

• Photogrammetry And Remote Sensing (section 3.8 on page 30),

• Printing (section 3.9 on page 32),

• Rubber, Synthetic Material, Foil (section 3.10 on page 32),

• Semiconductors (section 3.11 on page 33), and

• Solar, Renewable Energy, Recycling (section 3.12 on page 36).

In
du

st
ri

es

22 Industries

3.1 Automobile Parts And Manufacturers

3.1.1 Locate Car Door

Example:

%HALCONEXAMPLES%/hdevelop/Applications/Position-Recognition-3D/locate_car_door.hdev

The task of this application is to locate a car door placed in different orientations and positions by using the
calibrated perspective deformable matching. First a model is defined from a planar area of the car door, then a
reference pose is calculated by using an image with a calibration plate in the object plane. For all subsequent takes,
the pose can then be determined using the perspective deformable matching as shown in figure 3.1.

a) b)

Figure 3.1: (a) Calibration of the reference car door pose; (b) located car door with position values.

More information on perspective deformable matching and matching in general can be found in the Solution Guide
II-B, section 3.5 on page 99 and the Solution Guide I, chapter 10 on page 97.

3.2 Electric Components And Equipment 23

3.2 Electric Components And Equipment

3.2.1 Check the State of a Dip Switch

Example:

%HALCONEXAMPLES%/hdevelop/Applications/Position-Recognition-2D/cbm_dip_switch.hdev

The task of this example is to check a dip switch, i.e., to determine the positions of the single switches relative to
the casing (see figure 3.2). The task is solved using component-based matching.

a) b)

Figure 3.2: (a) Model image of the dip switch with ROIs for the components; (b) located dip switch with state of the
switches.

A detailed description of this application can be found in the Solution Guide I on page 109. More information on
component-based matching can be found in the Solution Guide II-B, section 3.3 on page 74.

3.2.2 Inspect Power Supply Cables

Example:

%HALCONEXAMPLES%/hdevelop/Filters/Lines/lines_color.hdev

The task of this example is to locate and inspect the power supply cables depicted in figure 3.3. The input for
the program are sample images of colored power supply cables. The task is to extract the centers of each cable
together with the width. This is performed using the subpixel-precise color line extractor.

a) b)

Figure 3.3: (a) Original color image with cable centers extracted using the color line extractor; (b) corresponding
results when using the gray value image.

A detailed description of this application can be found in the Solution Guide I on page 164.

In
du

st
ri

es

24 Industries

3.3 Agriculture, Food

3.3.1 "Best Before" Date

Example:

%HALCONEXAMPLES%/hdevelop/Applications/OCR/bottle.hdev

The task of this example is to inspect the "best before" date on the bottle depicted in figure 3.4. The task is solved
using OCR.

a) b)

Figure 3.4: (a) Original image; (b) read date.

A detailed description of this application can be found in the Solution Guide I on page 223.

3.4 Health Care And Life Science

3.4.1 Analyzing Particles

Example:

%HALCONEXAMPLES%/hdevelop/Applications/Measuring-2D/particle.hdev

The task of this application is to analyze particles in a liquid. The main difficulty is the presence of two types of
objects: big bright objects and small objects with low contrast. In addition, the presence of noise complicates the
segmentation. The task is solved by blob analysis.

A detailed description of this application can be found in the Solution Guide I on page 40.

3.4.2 Angiography

Example:

%HALCONEXAMPLES%/hdevelop/Filters/Lines/lines_gauss.hdev

The task of this example is to extract the blood vessels in the X-ray image of the heart depicted in figure 3.6.
The vessels are emphasized by using a contrast medium. For the diagnosis it is important to extract the width of
the vessels to determine locally narrowed parts (stenoses). The task is solved by using the subpixel-precise line
extractor.

A detailed description of this application can be found in the Solution Guide I on page 71.

3.5 Iron, Steel And Metal 25

a) b)

Figure 3.5: Extracting the small particles: (a) original image, (b) result.

a) b)

Figure 3.6: (a) X-ray image of the heart; (b) extracted blood vessels.

3.5 Iron, Steel And Metal

3.5.1 Inspect Cast Part

Example:

%HALCONEXAMPLES%/hdevelop/Applications/Measuring-2D/measure_arc.hdev

The task of this example is to inspect the distance between elongated holes of a cast part after chamfering (see
figure 3.7). The task is solved using 1D measuring.

A detailed description of this application can be found in the Solution Guide I on page 53. More information on
1D measuring can be found in the Solution Guide III-A.

In
du

st
ri

es

26 Industries

Figure 3.7: Measuring the distance between the holes.

3.6 Machinery

3.6.1 Reading Engraved Text

Example:

%HALCONEXAMPLES%/hdevelop/Applications/OCR/engraved.hdev

The task of this example is to read the engraved text on the metal surface depicted in figure 3.8. The task is solved
using OCR.

b)a)

Figure 3.8: (a) Original image; (b) read characters.

A detailed description of this application can be found in the Solution Guide I on page 224.

3.6 Machinery 27

3.6.2 Inspecting the Contours of a Tool

Example:

%HALCONEXAMPLES%/hdevelop/Applications/Measuring-2D/circles.hdev

The task of this example is to inspect the circular contours of the tool depicted in figure 3.9. The task is solved by
contour processing, which is applied to an automatically derived region of interest (ROI).

Figure 3.9: Fitting circles to the contours of the tool.

A detailed description of this application can be found in the Solution Guide I on page 32.

3.6.3 Locating a Pipe Wrench in Different States

Example:

%HALCONEXAMPLES%/hdevelop/Applications/Position-Recognition-2D/cbm_pipe_wrench.hdev

The task of this example is to locate a pipe wrench based on four predefined ROIs, two for each rigid part (see
figure 3.10). The task is solved using component-based matching.

b)a)

Figure 3.10: (a) Model image with specified ROIs for the components; (b) located pipe wrench in another state.

A detailed description of this application can be found in the Solution Guide I on page 110. More information on
component-based matching can be found in the Solution Guide II-B, section 3.3 on page 74.

In
du

st
ri

es

28 Industries

3.7 Packaging

3.7.1 Check Mixed Blister

Example:

%HALCONEXAMPLES%/hdevelop/Applications/Completeness-Check/check_blister_mixed.hdev

The task of this example is to check the content of manually filled blisters. The first image (reference) shows
the correct combination. The subsequent images are then checked against the reference image unsing a GMM
classifier as shown in figure 3.11.

a) b)

Figure 3.11: (a) The GMM classifier is trained with reference blister image; (b) recognition of a defect, a missing pill.

More information on classification can be found in the Solution Guide II-D and in the Solution Guide I, chapter 13
on page 143.

3.7 Packaging 29

3.7.2 Locate Cookie Box

Example:

%HALCONEXAMPLES%/hdevelop/Applications/Object-Recognition-2D/locate_cookie_box.hdev

This example shows how to find a cookie box in different orientations with the descriptor-based matching. First,
a model and a reference pose are computed from the reference image, then the model is searched in a sequence of
images showing the cookie box in different orientations. Using the resulting pose, we can also check whether the
box is placed upside down or not as shown in figure 3.12.

Note that, when running this example in HDevelop, the training of the model takes about half a minute.

Figure 3.12: A model is trained first and the box side matching this model can be found in subsequent images even
if placed upside down.

More information on descriptor-based matching and matching in general can be found in the Solution Guide II-B,
section 3.6 on page 107 and the Solution Guide I, chapter 10 on page 97.

In
du

st
ri

es

30 Industries

3.8 Photogrammetry And Remote Sensing

3.8.1 Extracting Forest Features from Color Infrared Image

Example:

%HALCONEXAMPLES%/hdevelop/Applications/Object-Recognition-2D/forest.hdev

The task of this example is to detect different object classes in the color infrared image depicted in figure 3.13:
trees (coniferous and deciduous), meadows, and roads. The image data is a color infrared image, which allows
to extract roads very easily because of their specific color. The taks is solved using color processing and blob
analysis.

a) b) c)

Figure 3.13: (a) Original image; (b) extracted trees and meadows; (c) extracted roads.

A detailed description of this application can be found in the Solution Guide I on page 41.

3.8.2 Segmenting a Color Image

Example:

%HALCONEXAMPLES%/hdevelop/Filters/Edges/edges_color.hdev

The task of this example is to segment the color image depicted in figure 3.14. The example demonstrates the
possibilities of a multi-channel edge filter. When using the corresponding gray value image, the (green) soccer
field cannot be distinguished from the surrounding (red) track.

c)

b)

a)

Figure 3.14: (a) Original image; (b) extracted color edges, overlaid on the color image; (c) extracted gray value
edges, overlaid on the gray value image.

A detailed description of this application can be found in the Solution Guide I on page 63.

3.8 Photogrammetry And Remote Sensing 31

3.8.3 Extract Roads

Example:

%HALCONEXAMPLES%/hdevelop/Applications/Object-Recognition-2D/roads.hdev

The task of this example is to extract the roads in the aerial image depicted in figure 3.15. For the road extraction it
is assumed that a road consists of two parallel edges with homogeneous gray values and a line segment in between.
The task is solved mainly by contour processing.

a) b) c)

Figure 3.15: (a) Original image; (b) zoomed image part; (c) extracted roads.

A detailed description of this application can be found in the Solution Guide I on page 93.

In
du

st
ri

es

32 Industries

3.9 Printing

3.9.1 Reading Bar Codes on a Toner Cartridge

Example:

%HALCONEXAMPLES%/hdevelop/Identification/Bar-Code/code39.hdev

The task of this example is to read bar codes of type Code 39 like the two bar codes depicted in figure 3.16. The
bar code type Code 39 is very popular on packages and other kind of product descriptions.

Figure 3.16: Detected bar codes.

3.10 Rubber, Synthetic Material, Foil

3.10.1 Checking a Boundary for Fins

Example:

%HALCONEXAMPLES%/hdevelop/Applications/Measuring-2D/fin.hdev

The task of this example is to check the outer boundary of a plastic part. In this case, some objects show fins that
are not allowed for faultless pieces (see figure 3.17). The task is solved using blob analysis.

Figure 3.17: Boundary with extracted fin.

A detailed description of this application can be found in the Solution Guide I on page 42.

3.11 Semiconductors 33

3.11 Semiconductors

3.11.1 Bonding Balls

Example:

%HALCONEXAMPLES%/hdevelop/Applications/Completeness-Check/ball.hdev

The task of this example is to inspect the diameter of the ball bonds depicted in figure 3.18. The task is solved
using blob analysis.

Figure 3.18: Measuring the diameter of ball bonds.

A detailed description of this application can be found in the Solution Guide I on page 43.

3.11.2 Inspecting an IC Using Fuzzy Measuring

Example:

%HALCONEXAMPLES%/hdevelop/Applications/Measuring-2D/fuzzy_measure_pin.hdev

The task of this example is to inspect the lead width and the lead distance of the IC depicted in figure 3.19. It is
solved using 1D measuring.

Figure 3.19: Measuring the width and distance of the leads.

A detailed description of this application can be found in the Solution Guide I on page 53. More information on
1D measuring can be found in the Solution Guide III-A.

In
du

st
ri

es

34 Industries

3.11.3 Measuring Leads of a Moving IC

Example:

%HALCONEXAMPLES%/hdevelop/Applications/Measuring-2D/pm_measure_board.hdev

The task of this example is to measure the positions of the leads of a chip (see figure 3.20). Because the chip
can appear at varying positions and angles, the regions of interest used for the measurement must be aligned. The
actual measurement is then realized by 1D measuring.

a) b)

Figure 3.20: (a) Model image with measurement ROIs; (b) measuring the leads in the aligned ROIs.

A detailed description of this application can be found in the Solution Guide I on page 53. More information on
1D measuring can be found in the Solution Guide III-A.

3.11.4 Creating a Mosaic Image

Example:

%HALCONEXAMPLES%/hdevelop/Tools/Mosaicking/gen_projective_mosaic.hdev

The task of this example is to create an image of the elongated printed circuit board depicted in figure 3.21.
Using standard image sizes, most of the image would be empty. The solution is to acquire images from multiple
viewpoints and then create a mosaic image using a point-based matching.

A detailed description of this application can be found in the Solution Guide I on page 111.

3.11 Semiconductors 35

Figure 3.21: Creating a mosaic image from multiple overlapping images.

3.11.5 Locating Board Components by Color

Example:

%HALCONEXAMPLES%/hdevelop/Applications/Completeness-Check/ic.hdev

The task of this example is to locate all components on the printed circuit board depicted in figure 3.22. It is solved
by color processing and blob analysis.

a) b)

Figure 3.22: (a) Original image; (b) extracted ICs, resistors, and capacitors.

A detailed description of this application can be found in the Solution Guide I on page 165.

In
du

st
ri

es

36 Industries

3.12 Solar, Renewable Energy, Recycling

3.12.1 Inspect Solar Cells

Example:

%HALCONEXAMPLES%/examples/hdevelop/Applications/Completeness-Check/inspect_solar_panel.hdev

The task of this example is to extract defect fingers from solar cells. A typical problem is that individual fingers of
a solar cell are broken as depicted in figure 3.23. The task is solved using blob analysis and morphology.

Figure 3.23: Extract broken fingers on a solar cell.

More information on blob analysis can be found in the Solution Guide I, chapter 4 on page 35.

Application Areas 37

Chapter 4

Application Areas

This chapter introduces example programs from various application areas:

• Identification With Bar Codes (section 4.1),

• Identification With Data Codes (section 4.2),

• Completeness Check (section 4.3 on page 39),

• Measuring And Comparison 2D (section 4.4 on page 40),

• Measuring And Comparison 3D (section 4.5 on page 41),

• Optical Character Recognition (section 4.6 on page 42),

• Position Recognition 2D (section 4.7 on page 43),

• Position Recognition 3D (section 4.8 on page 44),

• Object Recognition 2D (section 4.9 on page 45),

• Object Recognition 3D (section 4.10 on page 46),

• Robot Vision (section 4.11 on page 47),

• Print Inspection (section 4.12 on page 48),

• Surface Inspection (section 4.13 on page 49), and

• Traffic (section 4.14 on page 50).
A

pp
lic

at
io

n
A

re
as

38 Application Areas

4.1 Identification With Bar Codes

4.1.1 Reading a Bar Code on a CD

Example:

%HALCONEXAMPLES%/hdevelop/Applications/Bar-Codes/circular_barcode.hdev

Figure 4.1 shows an image of a CD, on which a bar code is printed radially. The task is to read this circular bar
code. Because the bar code reader cannot read this kind of print directly, the image first must be transformed such
that the elements of the bar code are parallel.

b)

a)

Figure 4.1: (a) Original image with segmented ring; (b) rectified ring with decoded bar code.

A detailed description of this application can be found in the Solution Guide I on page 201.

4.2 Identification With Data Codes

4.2.1 Reading 2D Data Codes on Chips

Example:

%HALCONEXAMPLES%/hdevelop/Applications/Data-Codes/ecc200_optimized.hdev

This example program reads 2D data codes (type ECC200) engraved in chips (see figure 4.2).

Figure 4.2: Decoded data code.

A detailed description of this application can be found in the Solution Guide I on page 210. More information on
2D data codes can be found in the Solution Guide II-C.

4.3 Completeness Check 39

4.3 Completeness Check

4.3.1 Inspect Razor Blades

Example:

%HALCONEXAMPLES%/solution_guide/matching/align_measurements.hdev

The task of this example is to check the razor blades depicted in figure 4.3. The program uses shape-based matching
to locate all blades and then uses 1D measuring to inspect the blades. Missing parts are detected and displayed.
This example is described in more detail in the Solution Guide II-B, section 2.4.3.2 on page 34.

Figure 4.3: Inspecting razor blades.

A
pp

lic
at

io
n

A
re

as

40 Application Areas

4.4 Measuring And Comparison 2D

4.4.1 Inspect IC

Example:

%HALCONEXAMPLES%/hdevelop/Applications/Measuring-2D/measure_pin.hdev

The task of this example is to inspect major dimensions of an IC (see figure 4.4). The task is solved using 1D
measuring.

a) b)

Figure 4.4: Measuring the dimensions of leads: (a) width of the leads and distance between them; (b) length of the
leads.

A detailed description of this application can be found in the Solution Guide I on page 55. More information in
1D measuring can be found in the Solution Guide III-A.

4.5 Measuring And Comparison 3D 41

4.5 Measuring And Comparison 3D

4.5.1 Inspect IC

Example:

%HALCONEXAMPLES%/hdevelop/Applications/Measuring-3D/resistor.hdev

The task of this example is to inspect a soldered component using depth-from-focus (see figure 4.5). There, a
sequence of images that are acquired with a continuously varying focus is used to derive a depth image.

b)

c)

a)

Figure 4.5: Depth-from-focus: (a) sequence of input images; (b) depth image; (c) segmentation of components.

More information on depth-from-focus can be found in the Solution Guide III-C, chapter 7 on page 161.

A
pp

lic
at

io
n

A
re

as

42 Application Areas

4.6 Optical Character Recognition

4.6.1 Reading Forms

Example:

%HALCONEXAMPLES%/hdevelop/Applications/OCR/ocrcolor.hdev

The task of this example is to extract and read the symbols in the form. A typical problem is that the symbols are
not printed in the correct place, as depicted in figure 4.6.

Figure 4.6: Example images for OCR.

A detailed description of this application can be found in the Solution Guide I on page 224.

4.7 Position Recognition 2D 43

4.7 Position Recognition 2D

4.7.1 Locate Components on a PCB

Example:

%HALCONEXAMPLES%/hdevelop/Matching/Component-Based/cbm_modules_simple.hdev

The task of this example is to locate multiple components on a printed circuit board in one step (see figure 4.7).
On a printed circuit board, typically multiple different objects are mounted, whose positions can vary because of
the tolerances in the mounting process. To locate all objects quickly and in a robust manner, the component-based
matching is used.

a)

b)

Figure 4.7: Component-based matching: (a) training objects; (b) objects, located in different images where the
relation of the objects with respect to each other varies.

A detailed description of this application can be found in the Solution Guide I on page 108. More information on
component-based matching can be found in the Solution Guide II-B, section 3.3 on page 74.

A
pp

lic
at

io
n

A
re

as

44 Application Areas

4.8 Position Recognition 3D

4.8.1 Get 3D Poses of Work Sheets

Example:

%HALCONEXAMPLES%/hdevelop/Applications/Position-Recognition-3D/3d_position_of_rectangle.hdev

The task of this example is to determine the 3D poses of work sheets like the one shown in figure 4.8. The task is
solved by a pose estimation for 3D rectangles. How to determine the poses of known 3D objects is described in
the Solution Guide III-C, chapter 4 on page 89.

Figure 4.8: Estimating the 3D pose of a rectangular work sheet: (left) pose of the work sheet visualized by extruding
the object’s border, (right) numerical result for the pose.

4.9 Object Recognition 2D 45

4.9 Object Recognition 2D

4.9.1 Distinguishing coins

Example:

%HALCONEXAMPLES%/solution_guide/basics/matching_coins.hdev

The task of this application is to distinguish different types of Euro coins, depending on the country of origin.
The coins differ on one side, having a specific symbol for each country (see figure 4.9). The task is solved by
shape-based matching, using one model for each country symbol.

Figure 4.9: Multiple coins that are distinguished.

A detailed description of this application can be found in the Solution Guide I on page 106. More information on
shape-based matching can be found in the Solution Guide II-B, section 3.2 on page 52.

A
pp

lic
at

io
n

A
re

as

46 Application Areas

4.10 Object Recognition 3D

4.10.1 Find 3D Clamps

Example:

%HALCONEXAMPLES%/hdevelop/Applications/Position-Recognition-3D/3d_matching_clamps.hdev

The task of this example is to find the 3D clamps shown in figure 4.10 and determine their poses, i.e., their position
and orientation in space. The task is solved by a shape-based 3D matching.

Figure 4.10: 3D matching: (left) original image containing a clamp, (right) 3D model of the found clamp projected in
the image and display of its pose.

A detailed description of this application can be found in the Solution Guide I on page 126. More information on
shape-based 3D matching can be found in the Solution Guide III-C, section 4.2 on page 93.

4.11 Robot Vision 47

4.11 Robot Vision

4.11.1 Grasp Nut

Example:

%HALCONEXAMPLES%/solution_guide/3d_vision/handeye_stationarycam_grasp_nut.hdev

The task of this example is to determine the relation between the camera, the pose of the nut shown in figure 4.11,
and the pose of a robot that has to grasp the nut. The task is solved by a hand-eye calibration.

b)a)

G1 & G2: grasping points

C1 − C4: corner points

grasping pose

reference coordinate system

Figure 4.11: (a) Determining the 3D pose for grasping a nut, (b) robot at grasping pose.

A detailed description of this application can be found in the Solution Guide III-C, chapter 8 on page 173.

A
pp

lic
at

io
n

A
re

as

48 Application Areas

4.12 Print Inspection

4.12.1 Inspect a Printed Logo

Example:

%HALCONEXAMPLES%/hdevelop/Applications/Print-Inspection/print_check.hdev

The task of this example is to inspect the logo printed on the pen clip depicted in figure 4.12. As an additional
difficulty, the pens move from image to image. The task is solved using a variation model.

b) c)

a)

Figure 4.12: Inspection of the logo that is printed on the pen clip: (a) training images; (b) accepted images; (c)
rejected images.

A detailed description of this application can be found in the Solution Guide I on page 134.

4.13 Surface Inspection 49

4.13 Surface Inspection

4.13.1 Surface Scratches

Example:

%HALCONEXAMPLES%/solution_guide/basics/surface_scratch.hdev

This example detects scratches on a metal surface (see figure 4.13). The task is solved using blob analysis. The
main difficulties for the segmentation are the inhomogenous background and the fact that the scratches are thin
structures.

c)

a) b)

Figure 4.13: Detecting scratches on a metal surface: (a) original image, (b) extracted scratches still partly fractioned,
(c) final result with merged scratches.

A detailed description of this application can be found in the Solution Guide I on page 43.

A
pp

lic
at

io
n

A
re

as

50 Application Areas

4.14 Traffic

4.14.1 Detect Road Signs

Example:

%HALCONEXAMPLES%/hdevelop/Applications/Traffic-Monitoring/detect_road_signs.hdev

A monitoring system in a car checks the sidewalk for road signs to support the driver. The task is solved using
perspective deformable matching. To show the imaging process we focus on two road signs, the attention and the
dead end road sign. First, the models of both signs are generated and then tracked in a street sequence as shown in
figure 4.14.

Figure 4.14: Using the models of the attention and the dead end sign, those signs can be tracked in a street.

A detailed description of this application can be found in the Solution Guide I, chapter 10 on page 97. More
information on perspective deformable matching can be found in the Solution Guide II-B, section 3.5 on page 99.

	1 Introducing HALCON
	1.1 Key Features
	1.2 Who Should Use HALCON?
	1.3 Required Knowledge
	1.4 Getting Started with HALCON
	1.5 Where to Get More Information

	2 How to Develop Applications with HALCON
	2.1 A Look Under the Surface of HALCON: Architecture and Data Structures
	2.1.1 HALCON Operators
	2.1.2 Parameters and Data Structures
	2.1.3 HALCON and Parallel Programming
	2.1.4 HALCON supports Compute Devices
	2.1.5 HALCON XL
	2.1.6 Image Acquisition
	2.1.7 I/O devices

	2.2 Quick Start with HDevelop
	2.3 Using HALCON Within Programming Languages
	2.3.1 C++
	2.3.2 C# and Visual Basic .NET
	2.3.3 C

	2.4 Extending HALCON
	2.4.1 Extension Packages (User-Defined Operators)
	2.4.2 Image Acquisition Interfaces
	2.4.3 I/O Device Interfaces

	2.5 Limitations
	2.5.1 General Limitations
	2.5.2 Limitations Related to Compute Devices
	2.5.3 Limitations Related to Image Acquisition
	2.5.4 Limitations Related to OpenGL
	2.5.5 Limitations Related to Extension Packages

	3 Industries
	3.1 Automobile Parts And Manufacturers
	3.1.1 Locate Car Door

	3.2 Electric Components And Equipment
	3.2.1 Check the State of a Dip Switch
	3.2.2 Inspect Power Supply Cables

	3.3 Agriculture, Food
	3.3.1 "Best Before" Date

	3.4 Health Care And Life Science
	3.4.1 Analyzing Particles
	3.4.2 Angiography

	3.5 Iron, Steel And Metal
	3.5.1 Inspect Cast Part

	3.6 Machinery
	3.6.1 Reading Engraved Text
	3.6.2 Inspecting the Contours of a Tool
	3.6.3 Locating a Pipe Wrench in Different States

	3.7 Packaging
	3.7.1 Check Mixed Blister
	3.7.2 Locate Cookie Box

	3.8 Photogrammetry And Remote Sensing
	3.8.1 Extracting Forest Features from Color Infrared Image
	3.8.2 Segmenting a Color Image
	3.8.3 Extract Roads

	3.9 Printing
	3.9.1 Reading Bar Codes on a Toner Cartridge

	3.10 Rubber, Synthetic Material, Foil
	3.10.1 Checking a Boundary for Fins

	3.11 Semiconductors
	3.11.1 Bonding Balls
	3.11.2 Inspecting an IC Using Fuzzy Measuring
	3.11.3 Measuring Leads of a Moving IC
	3.11.4 Creating a Mosaic Image
	3.11.5 Locating Board Components by Color

	3.12 Solar, Renewable Energy, Recycling
	3.12.1 Inspect Solar Cells

	4 Application Areas
	4.1 Identification With Bar Codes
	4.1.1 Reading a Bar Code on a CD

	4.2 Identification With Data Codes
	4.2.1 Reading 2D Data Codes on Chips

	4.3 Completeness Check
	4.3.1 Inspect Razor Blades

	4.4 Measuring And Comparison 2D
	4.4.1 Inspect IC

	4.5 Measuring And Comparison 3D
	4.5.1 Inspect IC

	4.6 Optical Character Recognition
	4.6.1 Reading Forms

	4.7 Position Recognition 2D
	4.7.1 Locate Components on a PCB

	4.8 Position Recognition 3D
	4.8.1 Get 3D Poses of Work Sheets

	4.9 Object Recognition 2D
	4.9.1 Distinguishing coins

	4.10 Object Recognition 3D
	4.10.1 Find 3D Clamps

	4.11 Robot Vision
	4.11.1 Grasp Nut

	4.12 Print Inspection
	4.12.1 Inspect a Printed Logo

	4.13 Surface Inspection
	4.13.1 Surface Scratches

	4.14 Traffic
	4.14.1 Detect Road Signs

