Datasheet

Main Features

- Quad ADC with 10-bit Resolution Using e2v Proprietary Analog Input Cross-point Switch
- 1.25 Gsps Sampling Rate in Four-channel Mode
- 2.5 Gsps Sampling Rate in Two-channel Mode
- 5 Gsps Sampling Rate in One-channel Mode
- Built-in four-by-four Cross Point Switch
- Single 2.5 GHz Differential Symmetrical Input Clock
- 500 mVpp Analog Input (Differential AC or DC Coupled)
- ADC Master Reset (LVDS)
- Double Data Rate Output Protocol
- LVDS Output Format
- Digital Interface (SPI) with Reset Signal:
- Channel Mode Selection
- Selectable Bandwidth (Two Available Settings)
- Gain Control
- Offset Control
- Phase Control
- Standby Mode (Full or Partial)
- Binary or Gray Coding Selection
- Test Modes (Ramp, Flashing)
- Power Supplies: 3.3V and 1.8V (Outputs)
- Reduced Clock Induced Transients on Power Supply Pins due to BiCMOS Silicon Technology
- Power Dissipation: 1.4W per Channel
- EBGA380 Package (RoHS, 1.27 mm Pitch)

Performance

- Selectable Full Power Input Bandwidth (-3 dB) up to 3.2 GHz (4-2-1 channel mode)
- Band Flatness: 0.5 dB from DC to 30% of Full Power Input Bandwidth
- Channel-to-Channel Isolation: $>60 \mathrm{~dB}$
- Four-channel Mode (Fsampling = 1.25 Gsps, -1 dBFS)
- Fin= 100 MHz (Bandwidth 1 GHz): ENOB = $8.6 \mathrm{bit}, \mathrm{SFDR}=65 \mathrm{dBc}, \mathrm{SNR}=53 \mathrm{~dB}, \mathrm{DNL}= \pm 0.5 \mathrm{LSB}, \mathrm{INL}= \pm 0.9 \mathrm{LSB}$
- Fin= 620 MHz (Full Bandwidth): ENOB = 8 bit, SFDR = 63 dBc, SNR = 48 dB
- Fin=1.2 GHz (Full Bandwidth): ENOB = 7.7 bit, SFDR = 56 dBc, SNR = 48 dB
- Two-channel or one-channel mode (Fsampling = 2.5 or 5 Gsps, -1 dBFS)
- Fin= 620 MHz (Full Bandwidth): ENOB = 7.9 bit, SFDR = $59 \mathrm{dBc}, \mathrm{SNR}=49 \mathrm{~dB}$
- Fin=1.2 GHz (Full Bandwidth): ENOB = 7.6 bit, SFDR = 56 dBc, SNR = 47.5 dB
- BER: $\mathbf{1 0}^{-16}$ at Full Speed
- Latency: Four-channel: 7 Clock Cycles

Applications

- High-Speed Data Acquisition
- Direct RF Down Conversion
- Ultra Wideband Satellite Digital Receiver
- 16 Gbps point-to-point Microwave Receivers
- High Energy Physics
- Automatic Test Equipment
- High-speed Test Instrumentation
- LiDAR (Light Detection and Ranging)

1. Block Diagram

Figure 1-1. Simplified Block Diagram

2. Description

The Quad ADC is made up of four 10-bit ADC cores which can be considered independently (fourchannel mode) or grouped by 2×2 cores (two-channel mode with the ADCs interleaved two by two) or one-channel mode (where all four ADCs are all interleaved together).

All four ADCs are clocked by the same external input clock signal and controlled via an industry standard SPI (Serial Peripheral Interface). An analog multiplexer (cross point switch) is used to select the analog inputs depending on the mode the Quad ADC is used in.

The clock circuit is common to all four ADCs. This block receives an external 2.5 GHz clock (maximum frequency) and preferably a low jitter sinewave signal. In this block, the external clock signal is then divided by two in order to generate the internal sampling clocks:

- in four-channel mode, the same 1.25 GHz clock is directed to all four ADC cores and T/H
- in two-channel mode, the in-phase 1.25 GHz clock is sent to ADC A or C and the inverted 1.25 GHz clock is sent to ADC B or D, while the analog input is sent to both ADCs, resulting in an interleaved mode with an equivalent sampling frequency of 2.5 Gsps
- in one-channel mode, the in-phase 1.25 GHz clock is sent to ADC A while the inverted 1.25 GHz clock is sent to ADC B, the in-phase 1.25 GHz clock is delayed by 90 degree phase to generate the clock for ADC C and the inverted 1.25 GHz clock is delayed by 90 degree phase to generate the clock for ADC D, resulting in an interleaved mode with an equivalent sampling frequency of 5 Gsps.

Note: This document should be used in conjunction with the other documentation relating to this product, for example; Application notes, etc.

Several adjustments for the sampling delay and the phase are included in this clock circuit to ensure a proper phase relation between the different clocks generated internally from the 2.5 GHz clock.

The cross point switch (analog MUX) is common to all ADCs. It allows to select which analog input has been chosen by the user:

- in four-channel mode, each analog input is sent to the corresponding ADC (AAI to ADC A, BAI to ADC B, CAI to ADC C and DAI to ADC D)
- in two-channel mode, one can consider that there are two independent ADCs composed of ADC A and B for the first one and of ADC C and D for the second one; the two analog inputs can be applied on AAI or on BAI for the first ADC (in which case, the signal is redirected internally to the second ADC of the pair; that is B or A respectively) and on CAI or DAI (in which case, the signal is redirected internally to the second ADC of the pair; that is D or C respectively)
- in one-channel mode, one analog input is chosen among AAI, BAI, CAI and DAI and then sent to all four ADCs

Figure 2-1. Four-channel Mode Configuration

Note: Refer to 3-1 "ADC Timing in Four-Channel Mode" on page 16.
Figure 2-2. Two-channel Mode Configuration (Analog Input A and Analog Input C)

Refer to 3-2 "ADC Timing in Two-channel Mode" on page 17.
Figure 2-3. Two-channel Mode Configuration (Analog Input A and Analog Input D)

Please refer to 3-2 "ADC Timing in Two-channel Mode" on page 17.
Figure 2-4. Two-channel Mode Configuration (Analog Input B and Analog Input C)

Please refer to 3-2 "ADC Timing in Two-channel Mode" on page 17.
Figure 2-5. Two-channel Mode Configuration (Analog Input B and Analog Input D)

Please refer to 3-2 "ADC Timing in Two-channel Mode" on page 17.
Figure 2-6. One-channel Mode Configuration

AAI, AAIN or BAI, BAIN or CAI, CAIN or DAI, DAIN

Notes: 1. Please refer to 3-3 "ADC Timing in One-channel Mode" on page 18.
2. For simplification purpose of the timer the temporal order of ports regarding sampling is $A C B D$, therefore samples order at output port is as follows:
A: $N, N+4, N+8, N+12 \ldots$
C: $N+1, N+5, N+9 \ldots$
B: $N+2, N+6, N+10 \ldots$
D: $N+3, N+7, N+11 \ldots$

The T / H (Track and Hold) is located after the cross point switch and before the ADC cores. This block is used to track the data when the internal sampling clock is low and to hold the data when the internal sampling clock is high. This stage has a gain of 2 .
The $A D C$ cores are all the same for the four ADCs. They include a quantifier block as well as a fast logic block composed of regenerating latches and the binary/Gray decoding block.

The SPI block provides the digital interface for the digital controls of the ADCs. All the functions of the ADC are contained in the SPI registers and controlled via this SPI (channel selection, standby mode, binary or Gray coding, offset gain and phase adjust).

The output buffers are LVDS compatible. They should be terminated using a 100Ω external termination resistor.

The ADC SYNC buffer is also LVDS compatible. This signal is used for internal synchronization. Its behavior is selectable via SPI (RM and SYNC registers).
A diode for the die junction temperature monitoring is implemented using a diode-mounted transistor but not connected to the die: both cathode and anode are accessible externally.
Eight DACs for the gain and the offset controls are included in the design and are addressed through the SPI:

- Offset DACs are used close to the cross point switch
- Gain DACs are used on the biasing of the reference ladders of each ADC core

These DACs have a resolution of 10-bit and will allow the control via the SPI of the offset and gain of the ADCs:

- Gain adjustment on 1024 steps, $\pm 10 \%$ range
- Offset adjustment on 1024 steps, ± 40 LSB range

Four DACs for fine phase control are included in the design and are addressed through the SPI, they have an 10 -bit resolution, and a tuning range of $\pm 15 \mathrm{ps}$ (1 step is about 30 fs).

3. Specifications

3.1 Absolute Maximum Ratings

Table 3-1. Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Positive supply voltage (analog core + SPI pads)	V_{CC}	4	V
Positive Digital supply voltage	$\mathrm{V}_{\mathrm{CCD}}$	2.5	V
Positive Digital supply voltage	$\mathrm{V}_{\mathrm{CCO}}$	2.5	V
Analog input voltages	$\mathrm{V}_{\text {IN }}$ or $\mathrm{V}_{\text {INN }}$	$\mathrm{G}_{\mathrm{ND}}-0.3(\min)$ $\mathrm{V}_{\mathrm{CC}}+0.3(\max)$	V
Maximum difference between $\mathrm{V}_{\text {IN }}$ and $\mathrm{V}_{\text {INN }}$	4	V	
Clock input voltage	$\mathrm{V}_{\text {IN }} \mathrm{V}_{\text {INN }}$	$\mathrm{G}_{\mathrm{ND}}-0.3(\min)$	V
Maximum difference between $\mathrm{V}_{\mathrm{CLK}}$ and $\mathrm{V}_{\mathrm{CLKN}}$	$\mathrm{V}_{\mathrm{CLK}}$ or $\mathrm{V}_{\mathrm{CLKN}}$	4	$\mathrm{~V}_{\mathrm{CC}}+0.3(\max)$

Notes:

1. Absolute maximum ratings are limiting values (referenced to $\mathrm{GND}=0 \mathrm{~V}$), to be applied individually, while other parameters are within specified operating conditions. Long exposure to maximum rating may affect device reliability.
2. All integrated circuits have to be handled with appropriate care to avoid damages due to ESD. Damage caused by inappropriate handling or storage could range from performance degradation to complete failure.

EV10AQ190A

3.2 Recommended Conditions of Use

Table 3-2. Recommended Conditions of Use

Parameter	Symbol	Comments	Recommended Value	Unit
Positive supply voltage	V_{CC}	Analog core and SPI pads	3.3	V
Positive digital supply voltage	$\mathrm{V}_{\text {CCD }}$	Digital parts	1.8	V
Positive output supply voltage	$\mathrm{V}_{\mathrm{CCO}}$	Output buffers	1.8	V
Power Sequencing		No power setup sequencing required		
Differential analog input voltage (full scale)	$\begin{aligned} & V_{I N}, V_{\text {INN }} \\ & V_{I N}, V_{I N N} \end{aligned}$		$\begin{aligned} & \pm 250 \\ & 500 \end{aligned}$	$\begin{gathered} \mathrm{mV} \\ \mathrm{mVpp} \end{gathered}$
Digital CMOS input	V_{D}	$\begin{aligned} & \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{IH}} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	V
Clock input power level	$\mathrm{P}_{\text {CLK }}, \mathrm{P}_{\text {CLKN }}$		0	dBm
Clock frequency	F_{C}	Minimum sampling frequency 600 MSps	$1.2 \leq \mathrm{F}_{\mathrm{C}} \leq 2.5$	GHz
Operating temperature range	$\mathrm{T}_{\mathrm{J},} \mathrm{T}_{\mathrm{C}}$	Commercial C grade Industrial V grade	$\begin{aligned} & 0^{\circ} \mathrm{C}<\mathrm{T}_{C} ; \mathrm{T}_{J}<90^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{C}} ; \mathrm{T}_{J}<110^{\circ} \mathrm{C} \end{aligned}$	${ }^{\circ} \mathrm{C}$

3.3 Electrical Characteristics for supplies, Inputs and Outputs

Unless otherwise specified:

- $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCD}}=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCO}}=1.8 \mathrm{~V}$
- -1 dBFS Analog input (Full Scale Input: $\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{INN}}=500 \mathrm{mVpp}$)
- Clock input differentially driven; analog input differentially driven
- Default mode: four-channel mode ON, binary output data format, Standby mode OFF, full bandwidth

Table 3-3. Electrical Characteristics for Supplies, Inputs and Outputs

Parameter	Test Level	Symbol	Mini.	Typ.	Max.	Unit
Resolution			10			bit
Power Requirements						
Power Supply voltage Analog (and SPI pads) Digital Output	1. 4	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{CCD}} \\ & \mathrm{~V}_{\mathrm{CCO}} \end{aligned}$	$\begin{aligned} & 3.15 \\ & 1.7 \\ & 1.7 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 1.8 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 3.45 \\ & 1.9 \\ & 1.9 \end{aligned}$	$\begin{aligned} & V \\ & V \\ & V \end{aligned}$
Power Supply current Analog (and SPI pads) Digital Output	1. 4	$I_{C C}$ $I_{C C D}$ $\mathrm{I}_{\mathrm{CCO}}$		$\begin{aligned} & 1.6 \\ & 2 \\ & 180 \end{aligned}$	$\begin{aligned} & 1.8 \\ & 3 \\ & 220 \end{aligned}$	$\begin{gathered} \mathrm{A} \\ \mathrm{~mA} \\ \mathrm{~mA} \end{gathered}$
Power supply current (partial standby mode AB) Analog (and SPI pads) Digital Output	1. 4	$I_{C C}$ $\mathrm{I}_{\mathrm{CCD}}$ $\mathrm{I}_{\mathrm{CCO}}$		$\begin{aligned} & 890 \\ & 1.80 \\ & 100 \end{aligned}$	$\begin{aligned} & 980 \\ & 3 \\ & 122 \end{aligned}$	mA mA mA

Table 3-3. Electrical Characteristics for Supplies, Inputs and Outputs (Continued)

Parameter	Test Level	Symbol	Mini.	Typ.	Max.	Unit
Power supply current (partial standby mode CD) Analog (and SPI pads) Digital Output	1. 4	I_{CC} $I_{C C D}$ $\mathrm{I}_{\mathrm{CCO}}$		$\begin{aligned} & 890 \\ & 2 \\ & 100 \end{aligned}$	$\begin{aligned} & 980 \\ & 3 \\ & 122 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
Power supply current (full standby mode) Analog (and SPI pads) Digital Output	1. 4	I_{CC} $I_{C C D}$ $\mathrm{I}_{\mathrm{CCO}}$		$\begin{aligned} & 180 \\ & 2 \\ & 22 \end{aligned}$	$\begin{aligned} & 220 \\ & 3 \\ & 25 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
Power dissipation Default mode Partial Standby mode (AB) Partial standby mode (CD) Full Standby mode	1. 4	P_{D}		$\begin{aligned} & 5.65 \\ & 3.15 \\ & 3.5 \\ & 0.65 \end{aligned}$	$\begin{aligned} & 6.35 \\ & 3.45 \\ & 3.45 \\ & 0.8 \end{aligned}$	$\begin{aligned} & \text { W } \\ & \text { W } \\ & \text { W } \\ & \text { W } \end{aligned}$
Data Inputs						
Full-scale Input Voltage range (differential mode)	1. 4	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}} \\ & \mathrm{~V}_{\mathrm{INN}} \end{aligned}$		$\begin{aligned} & 250 \\ & 250 \end{aligned}$		$m V p p$ mVpp
Input common mode	1. 4	$V_{\text {ICM }}$	1.5	1.55	1.65	V
Analog input capacitance (die)	4	$\mathrm{C}_{\text {IN }}$		0.5		pF
Input Resistance (differential) ${ }^{(1)(2)(3)}$	1. 4	R_{IN}	95	100	120	Ω
Clock Inputs						
Source Type	4	Differential Sinewave				
Clock input common mode voltage	1. 4	$\mathrm{V}_{\text {CM }}$	1.65	1.75	1.85	V
Clock input power level (low phase noise sinewave input) 100Ω differential, AC coupled signal	4	$\mathrm{P}_{\text {CLK }}$	-9	0	2	dBm
Clock input swing (differential voltage) - on each clock input	1. 4	$\mathrm{V}_{\text {CLK, }}$ $V_{\text {CLKN }}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & 450 \\ & 450 \end{aligned}$	$\begin{aligned} & 565 \\ & 565 \end{aligned}$	mVpp mVpp
Clock input capacitance (die + package)	4	$\mathrm{C}_{\text {CLK }}$		0.5		pF
Clock input resistance (differential)	1. 4	$\mathrm{R}_{\text {CLK }}$	90	100	110	Ω
Clock jitter (max. allowed on clock source) For 1 GHz sinewave analog input	4	Jitter			150	fs
Clock duty cycle requirement in one-channel mode for performance	4	Duty Cycle	48	50	52	\%
Clock duty cycle requirement in two-channel mode for performance	4	Duty Cycle	40	50	60	\%
Clock duty cycle requirement in four-channel mode for performance	4	Duty Cycle	40	50	60	\%
SYNC, SYNCN Signal						
Logic Compatibility	1. 4	LVDS				

Table 3-3. Electrical Characteristics for Supplies, Inputs and Outputs (Continued)

Parameter	Test Level	Symbol	Mini.	Typ.	Max.	Unit
Input voltages to be applied Logic Low Logic High Swing Common Mode	1. 4	$\begin{aligned} & \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IH}} \mathrm{~V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{ICM}} \end{aligned}$	1.4	$\begin{aligned} & 330 \\ & 1.25 \end{aligned}$	1.1	$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{mV} \\ \mathrm{~V} \end{gathered}$
SYNC, SYNCN input capacitance	4	CSYNC		0.5		pF
SYNC, SYNCN input resistance	4	RSYNC		100		Ω
SPI						
CMOS low level input voltage	1. 4	$V_{\text {ilc }}$	0		$0.3 \times \mathrm{V}_{\mathrm{CC}}$	V
CMOS high level input voltage	1. 4	$V_{\text {inc }}$	$0.7 \times \mathrm{V}_{\mathrm{CC}}$		$\mathrm{V}_{C C}$	V
CMOS low level of Schmitt trigger	1. 4	Vtminusc			$0.35 \times \mathrm{V}_{\mathrm{CC}}$	V
CMOS high level of Schmitt trigger	1. 4	Vtplusc	$0.65 \times V_{C C}$			V
CMOS Schmitt trigger hysteresis	1. 4	Vhystc	$0.15 \times \mathrm{V}_{\mathrm{CC}}$			V
CMOS low level output voltage (lolc $=2$ or 3 mA)	1. 4	Volc			0.4	V
CMOS high-level output voltage (lohc = 2 or 3 mA)	1. 4	Vohc	$0.8 \times \mathrm{V}_{\text {CC }}$			V
CMOS low-level input current (Vinc $=0 \mathrm{~V}$)	1. 4	lilc			10	$n A$
CMOS high-level input current (Vinc $=\mathrm{V}_{\mathrm{CC}}$)	1. 4	linc			165	nA
Digital Data And Data Ready Outputs						
Logic Compatibility	1,4		LVDS			
Output levels 50Ω transmission lines, $100 \Omega(2 \times 50 \Omega)$ differentially terminated -Swing (each single-ended output) -Common mode	1. 4	$\begin{aligned} & \mathrm{V}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{OL}} \\ & \mathrm{~V}_{\mathrm{OCM}} \end{aligned}$	$\begin{aligned} & 250 \\ & 1.125 \end{aligned}$		$\begin{aligned} & 450 \\ & 1.45 \end{aligned}$	$\begin{gathered} \mathrm{mV} \\ \mathrm{~V} \end{gathered}$

Notes: 1. Input impedance can be adjusted via register at address 0×13.
2. Differential output buffers impedance $=100 \Omega$ differential.
3. After calibration, the value is centered on the typical value $\pm 5 \%$.

3.4 Converter Characteristics

Unless otherwise specified:

- $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCD}}=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCO}}=1.8 \mathrm{~V}$
- -1 dBFS Analog input (full-scale input: $\mathrm{V}_{\mathrm{IN}}-\mathrm{VI}_{\mathrm{NN}}=500 \mathrm{mVpp}$)
- Clock input differentially driven; analog input differentially driven
- Test conditions: four-channel mode ON, binary output data format, standby mode OFF, full bandwidth (unless specified)
Table 3-4. Low Frequency Characteristics

Parameter	Test Level	Symbol	Min.	Typ.	Max.	Unit
DC Accuracy						
Gain central value ${ }^{(1)}$	1. 4			1		
Gain error drift	4			325		ppm $/{ }^{\circ} \mathrm{C}$
Input offset voltage ${ }^{(2)}$	1. 4			0		LSB
Four-Channel Mode (Fsampling = 1.25 Gsps, Fin = $100 \mathrm{MHz}, \mathbf{- 1} \mathrm{dBFS}$), for Each Channel						
DNLrms	1. 4	DNLrms		0.1	0.19	LSB
Differential nonlinearity	1. 4	DNL+		0.5	0.9	LSB
Differential nonlinearity	1. 4	DNL-	-0.9	-0.5		LSB
INLrms	1. 4	INLrms		0.3	0.9	LSB
Integral nonlinearity	1. 4	INL+		0.9	2.5	LSB
Integral nonlinearity	1. 4	INL-	-2.5	-0.9		LSB
Two-Channel Mode (Fsampling = 2.5 Gsps, Fin = $100 \mathrm{MHz}, \mathbf{- 1 ~ d B F S}$), for Each Channel						
DNLrms	1. 4	DNLrms		0.1	0.19	LSB
Differential nonlinearity	1. 4	DNL+		0.5	0.9	LSB
Differential nonlinearity	1. 4	DNL-	-0.9	-0.5		LSB
INLrms	1.4	INLrms		0.3	0.9	LSB
Integral nonlinearity	1. 4	INL+		0.9	2.5	LSB
Integral nonlinearity	1. 4	INL-	-2.5	-0.9		LSB
One-Channel Mode (Fsampling = 5 Gsps, Fin = 100 MHz , -1 dBFS)						
DNLrms	1. 4	DNLrms		0.1	0.19	LSB
Differential nonlinearity	1. 4	DNL+		0.5	0.9	LSB
Differential nonlinearity	1. 4	DNL-	-0.9	-0.5		LSB
INLrms	1. 4	INLrms		0.3	0.9	LSB
Integral nonlinearity	1. 4	INL+		0.8	2.5	LSB
Integral nonlinearity	1. 4	INL-	-2.5	-0.8		LSB

Notes: 1. Gain central value can be set to 1 via the gain adjustment function of the SPI at register 0×22. Gain central value is measured at $\mathrm{Fin}=100 \mathrm{MHz}$.
2. Offset can be adjusted to 0 LSB via the offset adjustment function of the SPI at register 0×20.

EV10AQ190A

Table 3-5. Dynamic Characteristics

Parameter	Symbol	Test Level	Min.	Typ.	Max.	Unit	Note
AC and DC Analog Inputs							
Power Input Bandwidth in Full mode ($B W=$ "1" in 0x01 register) Power Input Bandwidth in Nominal mode ($\mathrm{BW}=$ " 0 " in 0×01 register, default mode)	FPBW	4		3.2 1.5		$\begin{aligned} & \mathrm{GHz} \\ & \mathrm{GHz} \end{aligned}$	$\begin{aligned} & \text { (1) } \\ & \text { (2) } \end{aligned}$
Gain Flatness ($\pm 0.5 \mathrm{~dB}$ in full band mode setting $\mathrm{BW}=1$ in 0×01 register)	GF	4		1.5		GHz	
Input Voltage Standing Wave Ratio up to 3 GHz	VSWR	4			2.13		(2) (3)
Crosstalk (Fin $=620 \mathrm{MHz}$)		4		60		dB	
Dynamic Performance - Four-channel Mode (Fsampling = 1.25 Gsps, Vin =-1 dBFS) for each channel (after calibration)							
Effective Number of Bits $\begin{aligned} & \text { Fs }=1.25 \text { Gsps Fin }=100 \mathrm{MHz} \\ & \text { Fs }=1.25 \text { Gsps Fin }=620 \mathrm{MHz} \\ & \text { Fs }=1.25 \text { Gsps Fin }=1200 \mathrm{MHz} \end{aligned}$	ENOB	1. 4	$\begin{aligned} & 8 \\ & 7.6 \\ & 7.2 \end{aligned}$	$\begin{aligned} & 8.6 \\ & 8 \\ & 7.7 \end{aligned}$		Bit	(4)
Signal-to-Noise Ratio $\begin{aligned} & \text { Fs }=1.25 \text { Gsps Fin }=100 \mathrm{MHz} \\ & \text { Fs }=1.25 \text { Gsps Fin }=620 \mathrm{MHz} \\ & \text { Fs }=1.25 \text { Gsps Fin }=1200 \mathrm{MHz} \end{aligned}$	SNR	1. 4	$\begin{aligned} & 51 \\ & 48 \\ & 46 \end{aligned}$	$\begin{aligned} & 53 \\ & 49.5 \\ & 48 \end{aligned}$		dB	(4)
Total Harmonic Distortion (9 Harmonics) $\begin{aligned} & \text { Fs }=1.25 \mathrm{Gsps} \text { Fin }=100 \mathrm{MHz} \\ & \text { Fs }=1.25 \mathrm{Gsps} \text { Fin }=620 \mathrm{MHz} \\ & \text { Fs }=1.25 \mathrm{Gsps} \text { Fin }=1200 \mathrm{MHz} \end{aligned}$	ITHDI	1. 4	$\begin{aligned} & 53 \\ & 51 \\ & 49 \end{aligned}$	$\begin{aligned} & 61 \\ & 60 \\ & 54 \end{aligned}$		dB	(4)
Spurious Free Dynamic Range $\begin{aligned} & \mathrm{Fs}=1.25 \mathrm{Gsps} \text { Fin } \\ &=100 \mathrm{MHz} \\ & \mathrm{Fs}=1.25 \mathrm{Gsps} \text { Fin } \end{aligned}=620 \mathrm{MHz}, ~=1.25 \mathrm{Gsps} \text { Fin }=1200 \mathrm{MHz}$	ISFDRI	1. 4	$\begin{aligned} & 54 \\ & 53 \\ & 50 \end{aligned}$	$\begin{aligned} & 65 \\ & 63 \\ & 56 \end{aligned}$		dBc	(4)
Two-tone third order Intermodulation Distortion $\begin{aligned} & \text { Fs }=1.25 \mathrm{Gsps} \\ & \text { Fin1 }=490 \mathrm{MHz} ; \text { Fin2 }=495 \mathrm{MHz}[-7 \mathrm{dBFS}] \end{aligned}$	IIMD3\|	4		52		dBFS	(4)
Dynamic Performance - Two and One-channel Mode (Fsampling = 1.25 and 2.5 Gsps respectively, -1 dBFS) for each channel (after calibration)							
Effective Number of Bits $\begin{aligned} & \text { Fs }=2.5 \text { Gsps Fin }=620 \mathrm{MHz} \\ & \text { Fs }=1.25 \mathrm{Gsps} \text { Fin }=1200 \mathrm{MHz} \end{aligned}$	ENOB	1. 4	$\begin{aligned} & 7.5 \\ & 7.2 \end{aligned}$	$\begin{aligned} & 7.9 \\ & 7.6 \end{aligned}$		Bit	(4)
Signal to Noise Ratio $\begin{aligned} & \text { Fs }=2.5 \text { Gsps Fin }=620 \mathrm{MHz} \\ & \text { Fs }=1.25 \text { Gsps Fin }=1200 \mathrm{MHz} \end{aligned}$	SNR	1. 4	$\begin{aligned} & 47 \\ & 45 \end{aligned}$	$\begin{aligned} & 49 \\ & 47.5 \end{aligned}$		dB	(4)

Table 3-5. Dynamic Characteristics (Continued)

Parameter	Symbol	Test Level	Min.	Typ.	Max.	Unit	Note
Total Harmonic Distortion (9 Harmonics) $\begin{aligned} & \text { Fs }=2.5 \text { Gsps Fin }=620 \mathrm{MHz} \\ & \text { Fs }=1.25 \text { Gsps Fin }=1200 \mathrm{MHz} \end{aligned}$	ITHDI	1. 4	$\begin{aligned} & 51 \\ & 49 \end{aligned}$	$\begin{aligned} & 58 \\ & 54 \end{aligned}$		dB	(4)
Spurious Free Dynamic Range $\begin{aligned} & \text { Fs }=2.5 \text { Gsps Fin }=620 \mathrm{MHz} \\ & \text { Fs }=1.25 \text { Gsps Fin }=1200 \mathrm{MHz} \end{aligned}$	ISFDRI	1. 4	$\begin{aligned} & 51 \\ & 50 \end{aligned}$	$\begin{aligned} & 59 \\ & 56 \end{aligned}$		dBc	(4)
Two-tone Third Order Intermodulation Distortion Fs $=2.5 \mathrm{Gsps}$ Fin1 $=490 \mathrm{MHz}$; Fin2 $=495 \mathrm{MHz}[-7 \mathrm{dBFS}]$	IIMD3\|	4		53		dBFS	(4)
Dynamic Performance - One-channel Mode (Fsampling = 5 Gsps and Vin =-1 dBFS) (after Calibration)							
Effective Number of Bits $\begin{aligned} & \text { Fs }=5 \text { Gsps Fin }=620 \mathrm{MHz} \\ & \text { Fs }=5 \text { Gsps Fin }=1200 \mathrm{MHz} \end{aligned}$	ENOB	4.1	$\begin{aligned} & 7.5 \\ & 7.2 \end{aligned}$	$\begin{aligned} & 7.9 \\ & 7.6 \end{aligned}$		Bit	(4)
Signal to Noise Ratio $\begin{aligned} & \text { Fs }=5 \text { Gsps Fin }=620 \mathrm{MHz} \\ & \text { Fs }=5 \text { Gsps Fin }=1200 \mathrm{MHz} \end{aligned}$	SNR	4.1	$\begin{aligned} & 47 \\ & 45 \end{aligned}$	$\begin{aligned} & 49 \\ & 47.5 \end{aligned}$		dB	(4)
Total Harmonic Distortion (9 Harmonics) $\begin{aligned} & \text { Fs }=5 \text { Gsps Fin }=620 \mathrm{MHz} \\ & \text { Fs }=5 \mathrm{Gsps} \text { Fin }=1200 \mathrm{MHz} \end{aligned}$	ITHDI	4.1	$\begin{aligned} & 51 \\ & 49 \end{aligned}$	$\begin{aligned} & 58 \\ & 54 \end{aligned}$		dB	(4)
Spurious Free Dynamic Range $\begin{aligned} & \text { Fs }=5 \text { Gsps Fin }=620 \mathrm{MHz} \\ & \text { Fs }=5 \text { Gsps Fin }=1200 \mathrm{MHz} \end{aligned}$	ISFDRI	4.1	$\begin{aligned} & 51 \\ & 50 \end{aligned}$	$\begin{aligned} & 59 \\ & 56 \end{aligned}$		dBc	(4)

Notes: 1. It is recommended to use the ADC in reduced bandwidth mode in order to minimize the noise in the ADC when allowed by the application.
2. These figures apply in all four-channel, two-channel and one-channel modes (interleaved and non interleaved modes).
3. Specified from DC up to 2.5 GHz input signal. Input VSWR is measured on a soldered device. It assumes an external 50Ω $\pm 2 \Omega$ controlled impedance line, and a 50Ω driving source impedance ($\mathrm{S} 11<-30 \mathrm{~dB}$).
4. All the figures provided at Fin $=100 \mathrm{MHz}$ and at Fin $=620 \mathrm{MHz}$ are obtained using the ADC in nominal band mode. The one provided at Fin $=1.2 \mathrm{GHz}$ is obtained using the ADC in full band mode.
5. Section 7.6 for a description of the calibration procedure.

EV10AQ190A

3.5 Transient and Switching Characteristics

Table 3-6. Transient and Switching Characteristics

Parameter	Symbol	Test Level	Min	Typ	Max	Unit	Note
Transient Performance							
Bit Error Rate at 1.25 Gsps in Gray mode	BER	4		10^{-16}		Error/ sample	(1)
ADC settling time $\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {INN }}=400 \mathrm{mVpp}\right)$ in Full BW mode	TS	4			4	Clock cycles	(3)
Overvoltage recovery time	ORT	4			4	Clock cycles	
ADC step response Rise/fall time (10/90\%) In Full BW mode In Nominal BW mode				$\begin{aligned} & 130 \\ & 225 \end{aligned}$		$\begin{aligned} & \text { ps } \\ & \text { ps } \end{aligned}$	(2)
Overshoot					2	\%	
Ringback					2	\%	

Note: 1. Output error amplitude $< \pm 33 \mathrm{Isb}$. $\mathrm{Fs}=1.25 \mathrm{Gsps} \mathrm{T}_{\mathrm{J}}=110^{\circ} \mathrm{C}$.
2. Step response measured using square wave input of 300 MHZ
3. Using 20 MHz square input signal.

Table 3-7. Transient and Switching Characteristics

Parameter	Symbol	Test Level	Min.	Typ.	Max.	Unit	Note
Switching Performance and Characteristics							
Clock frequency	$\mathrm{F}_{\text {CLK }}$	4	400		2500	MHz	(1)(2)(7)
Maximum sampling frequency (for each channel) Four-channel mode Two-channel mode One-channel mode	F_{S}	4	$\begin{aligned} & 200 \\ & 400 \\ & 800 \end{aligned}$		$\begin{aligned} & 1250 \\ & 2500 \\ & 5000 \end{aligned}$	MHz MHz MHz	
Minimum clock pulse width (high)	TC1	4			200	ns	
Minimum clock pulse width (low)	TC2	4			200	ns	
Aperture delay	TA	4		100		ps	
ADC Aperture uncertainty	Jitter	4		200		fs rms	
Output rise time for Data (20\%-80\%)	TR	4		200		ps	(3)
Output fall time for Data (20\%-80\%)	TF	4		200		ps	(3)
Output rise time for Data Ready (20\%-80\%)	TR	4		150		ps	(3)
Output fall time for Data Ready (20\%-80\%)	TF	4		150		ps	(3)
Data output delay	TOD	4		3		ns	(4)
Data ready output delay	TDR	4		3		ns	(4)
	ITOD-TDRI	4		60	100	ps	(5)

Table 3-7. Transient and Switching Characteristics (Continued)

Output data to data ready propagation delay	TD1	4		420		ps	(5)
Data ready to output data propagation delay	TD2	4		380		ps	(5)
Output Data pipeline delay Four-channel mode Port A, B, C, D Two-channel mode Port A, C Port B, D One-channel mode Port A Port B Port C Port D	TPD	4		$\begin{aligned} & 7 \\ & 8 \\ & 7 \\ & 8 \\ & 8 \\ & 7 \\ & 7.5 \\ & 6.5 \end{aligned}$		Clock Cycles	
Data ready reset delay	TRDR	4		1Tclock + TDR			(8)
Minimum SYNC pulse width	TSYNC		$5 \times$ Tclock			ns	
SYNC Forbidden area lower bound	T1	4			285	ps	(6)
SYNC Forbidden area upper bound	T2	4	240			ps	(6)

Notes: 1. See Definition of Terms.
2. The clock frequency lower limit is due to the gain.
3. $50 \Omega / / C L O A D=2 p F$ termination (for each single-ended output). Termination load parasitic capacitance derating value: $50 \mathrm{ps} / \mathrm{pF}$ (ECL).
4. TOD and TDR propagation times are defined at package input/outputs. They are given for reference only.
5. Values for TD1 and TD2 are given for a 2.5 GHz external clock frequency (50% duty cycle). For different sampling rates, apply the following formula: TD1 $=$ T/2 + (TOD-TDR) and TD2 $=$ T/2 $-($ TOD-TDR), where T= clock period. This places the rising edge (True-False) of the differential Data Ready signal in the middle of the Output Data valid window. This gives maximum setup and hold times for external data acquisition. The difference (TD1- TD2) gives an information if DATA READY is centered on the output data. if data ready is in the middle TD1 = TD2 = Tdata/2.
6. Tclock external clock period. No transition of SYNC signal is allowed between T1 and T2 (forbidden area). Please refer to Section 6.2 on page 36 and Figure 6-3 on page 39.
7. This device is recommended for sampling rate beyond $600 \mathrm{Msps}(1200 \mathrm{MHz})$. For application at lower fequencies, please contact e2v hotline for specific application recommendation.
8. Only applicable in $\mathrm{RM}=0$ mode. In RM = 1 mode, Data Ready continue during the SYNC, except for a very short period of time (<2 data cycles) during data ready is reinitialized.

3.6 Explanation of Test Levels

Table 3-8. Explanation of Test Levels

1	100% production tested ${ }^{(1)}$ at $+25^{\circ} \mathrm{C}^{(2)}$ (for C temperature range ${ }^{(3)}$)
2	100% production tested ${ }^{(1)}$ at $+25^{\circ} \mathrm{C}^{(2)}$, and sample tested at specified temperatures (for V Temperature ranges ${ }^{(3)}$)
3	Sample tested only at specified temperatures
4	Parameter is guaranteed by design and characterization testing (thermal steady-state conditions at specified temperature)
5	Parameter is a typical value only guaranteed by design only
6	100% production tested over specified temperature range (for B / Q temperature range ${ }^{(3)}$)

Notes: 1. Only minimum and maximum values are guaranteed (typical values are issued from characterization results).
2. Unless otherwise specified.
3. If applicable, please refer to Section 9. "Ordering Information" on page 67.

3.7 Timing Diagrams

For information on the reset sequence (using SYNCP, SYNCN signals, please refer to Section 6.2 "ADC Synchronization Signal (SYNCP, SYNCN)" on page 36).

Figure 3-1. ADC Timing in Four-Channel Mode

Note: 1. X refers to A, B, C and D.

Figure 3-2. ADC Timing in Two-channel Mode

Notes: 1. In two-channel mode, the two analog inputs can be applied on:

- (AAI, AAIN) and (CAI, CAIN), in which case, the outputs corresponding to (AAI, AAIN) will be on A0...A9 and B0...B9 and the ones corresponding to (CAI, CAIN) on C0...C9 and D0...D9.
- or (AAI, AAIN) and (DAI, DAIN), in which case, the outputs corresponding to (AAI, AAIN) will be on A0...A9 and B0...B9
and the ones corresponding to (DAI, DAIN) on C0...C9 and D0...D9
or (BAI, BAIN) and (CAI, CAIN), in which case, the outputs corresponding to (BAI, BAIN) will be on
A0...A9 and B0...B9 and the ones corresponding to (CAI, CAIN) on C0...C9 and D0...D9.
- or (BAI, BAIN) and (DAIN, DAIN), in which case, the outputs corresponding to (BAI, BAIN) will be on

A0...A9 and B0...B9 and the ones corresponding to (DAI, DAIN) on C0...C9 and D0...D9.

Figure 3-3. ADC Timing in One-channel Mode

Note: In one-channel mode, the analog input can be applied on (AAI,AAIN), (BAI, BAIN), (CAI, CAIN) or (DAI, DAIN). The choice is made via the SPI in the control register.

3.8 Digital Output Coding

Table 3-9. ADC Digital Output Coding Table

Differential Analog Input	Voltage Level	Digital Output			
		BinaryMSB............LSBOut-of-range		GrayMSB............LSBOut-of-range	
> +250.25 mV	> Top end of full scale $+1 / 2$ LSB	1111111111	1	1000000000	1
+250.25 mV	Top end of full scale $+1 / 2$ LSB	1111111111	0	1000000000	0
+249.75 mV	Top end of full scale - $1 / 2$ LSB	1111111110	0	1000000001	0
+124.75 mV	$3 / 4$ full scale $+1 / 2$ LSB	110000000	0	1010000000	0
+124.25 mV	$3 / 4$ full scale - $1 / 2$ LSB	1011111111	0	1110000000	0
+0.25 mV	Mid scale $+1 / 2$ LSB	1000000000	0	1100000000	0
-0.25 mV	Mid scale - $1 / 2$ LSB	0111111111	0	0100000000	0
-124.25 mV	$1 / 4$ full scale $+1 / 2$ LSB	0100000000	0	0110000000	0
-124.75 mV	$1 / 4$ full scale - $1 / 2$ LSB	0011111111	0	0010000000	0
-249.75 mV	Bottom end of full scale $+1 / 2 \mathrm{LSB}$	0000000001	0	0000000001	0
-250.25 mV	bottom end of full scale - $1 / 2$ LSB	0000000000	0	0000000000	0
<-250.25 mV	< bottom end of full scale - $1 / 2$ LSB	000000000	1	0000000000	1

3.9 Definition of Terms

Table 3-10. Definition of Terms

Term	Description	
(Fs max)	Maximum sampling frequency	Sampling frequency for which ENOB < 6 bits
(Fs min)	Bit error rate	Sampling frequency for which the ADC Gain has fallen by 0.5 dB with respect to to ge gain reference value. Performances are not guaranteed below this frequency.
(BER)	Full power input bandwidth	Probability to exceed a specified error threshold for a sample at maximum specified sampling rate. An error code is a code that differs by more than ± 16 LSB from the correct code.
(FPBW)	Analog input frequency at which the fundamental component in the digitally reconstructed output waveform has fallen by 3 dB with respect to its low frequency value (determined by FFT analysis) for input at full scale -1 dB (-1 dBFS).	
Small signal input bandwidth	Analog input frequency at which the fundamental component in the digitally reconstructed output waveform has fallen by 3 dB with respect to its low frequency value (determined by FFT analysis) for input at full scale -10 dB (-10 dBFS).	
(SSBW)	Signal-to-noise and distortion ratio	Ratio expressed in dB of the RMS signal amplitude, set to 1 dB below full scale $(-1$ dBFS), to the RMS sum of all other spectral components, including the harmonics except DC.

Table 3-10. Definition of Terms (Continued)

Term	Sescription	
(SNR)	Signal-to-noise ratio	Ratio expressed in dB of the RMS signal amplitude, set to 1dB below full scale, to the RMS sum of all other spectral components excluding the nine first harmonics.
(THD)	Total harmonic distortion	Ratio expressed in dB of the RMS sum of the first nine harmonic components, to the RMS input signal amplitude, set at 1 dB below full scale. It may be reported in dB (that is, related to converter -1 dB full scale), or in dBc (that is, related to input signal level).
(SFDR)	Spurious free dynamic range	Ratio expressed in dB of the RMS signal amplitude, set at 1 dB below full scale, to the RMS value of the highest spectral component (peak spurious spectral component). The peak spurious component may or may not be a harmonic. It may be reported in dB (that is., related to converter r-1 dB full scale), or in dBc (that is, related to input signal level).
Effective number of bits	ENOB = - 1.76 + 20 log (A/FS/2) 6.02	
(ENOB)	Where A is the actual innut amplitude and FS is the full scale range	
of the ADC under test.		

Table 3-10. Definition of Terms (Continued)

Term		Description
(TD1)	Time delay from data transition to data ready	The difference TD1-TD2 gives an information if data ready is centered on the output data. If data ready in the middle TD1= TD2 = Tdata/2
(TD2)	Time delay from data ready to data transition	
(TC)	Encoding clock period	TC1 $=$ Minimum clock pulse width (high) TC $=$ TC1 + TC2 TC2 $=$ Minimum clock pulse width (low)
(TPD)	Pipeline delay	Number of clock cycles between the sampling edge of an input data and the associated output data being made available, (not taking in account the TOD).
(TRDR)	Data Ready reset delay	Delay between first rising edge of the clock after SYNC pulse and the setting inactive of the data ready.
(TR)	Rise time	Time delay for the output DATA signals to rise from 20% to 80% of delta between low level and high level.
(TF)	Fall time	Time delay for the output DATA signals to fall from 20% to 80% of delta between low level and high level.
(PSRR)	Power supply rejection ratio	Ratio of input offset variation to a change in power supply voltage.
(NRZ)	Nonreturn to zero	When the input signal is larger than the upper bound of the ADC input range, the output code is identical to the maximum code and the out-of-range bit is set to logic one. When the input signal is smaller than the lower bound of the ADC input range, the output code is identical to the minimum code, and the Out of range bit is set to logic one. (It is assumed that the input signal amplitude remains within the absolute maximum ratings).
(IMD)	Intermodulation distortion	The two tones intermodulation distortion (IMD) rejection is the ratio of either input tone to the worst third order intermodulation products.
(NPR)	Noise power ratio	The NPR is measured to characterize the ADC performance in response to broad bandwidth signals. When applying a notchfiltered broadband white-noise signal as the input to the ADC under test, the noise power ratio is defined as the ratio of the average out-of-notch to the average in-notch power spectral density magnitudes for the FFT spectrum of the ADC output sample test.
(VSWR)	Voltage standing wave ratio	The VSWR corresponds to the ADC input insertion loss due to input power reflection. For example a VSWR of 1.2 corresponds to a 20 dB return loss (that is, 99% power transmitted and 1% reflected).

4. Characterization Results

Nominal conditions (unless otherwise specified):

- $\mathrm{VCC}=3.3 \mathrm{~V}, \mathrm{VCCD}=1.8 \mathrm{~V}, \mathrm{VCCO}=1.8 \mathrm{~V}$
- -1 dBFS analog input (full scale input, VIN - VINN $=500 \mathrm{mVpp}$)
- Clock input differentially driven; analog input differentially driven
- Default mode: four-channel mode ON, binary output data format, digital interface ON, Standby mode off, nominal bandwidth

Figure 4-1. \quad Normalized Full Power Input Bandwidth (-1 dBFS Input, 1 -channel Mode, Fc $=2.5 \mathrm{GHz}$, Full Bandwidth Setting)

ADC Quad 10bit - 1-ch - Input Bandwidth in Full mode @ Fc=2,5GHz

Figure 4-2. Full Power Input Bandwidth (-1 dBFS Input, 1-channel Mode, $\mathrm{Fc}=2.5 \mathrm{GHz}$, Nominal Bandwidth Setting)

ADC Quad 10bit - 1-channel - Nominal Bandwidth @ Fc=2,5G

Figure 4-3. ENOB vs Fin in 1 Channel Mode Versus Temp and Power Supply (Min ' all Power Supplies at min value, Max ' all Power Supplies at max Value)

Figure 4-4. SFDR vs Fin in 1 Channel Mode Versus Temp and Power Supply (Min ' all Power Supplies at min value, Max ' all Power Supplies at max Value)

Quad 10b - SFDR vs Fin @ Fc=2.5G - 1-ch mode

Figure 4-5. Spectrum at Fs = 2.5 Gsps (1-channel Mode), Fin $=1200 \mathrm{MHz}$

Figure 4-6. \quad Spectrum at Fs $=2.5$ Gsps (2-channel Mode), Fin $=1200 \mathrm{MHz}$

Figure 4-7. \quad Spectrum at Fs = 2.5 Gsps (4-Channels\& Mode), Fin $=1200 \mathrm{MHz}$

5. Pin Description

5.1 Pinout View (Bottom View)

5.2 Pinout Table

Table 5-1. Pinout Table

Pin Label	Pin Number	Description	I/O	Simplified Electrical Schematics
Power supplies				
GND	A1, A6, A9, A12, A13, A16, A19 A24, B1, B6, B7, B8, B9, B10, B11, B14, B15, B16, B17, B18, B19, B24, C4, C7, C8, C9, C10, C11, C12, C13, C14, C15, C16, C17, C18, C21, D4, D8, D9, D10, D11, D12, D13, D14, D15, D16, D17, D21, E8, E9, E10, E11, E12, E13, E14, E15, E16, E17, J5, J20, L5, L20, P5, P20, T5, T20, Y8, Y9, Y12, Y13, Y16, Y17, AA4, AA8, AA9, AA12, AA13, AA16, AA17, AA21, AB4, AB6, AB8, AB9, AB12, AB13, AB16, AB17, AB19, AB21, AC1, AC6, AC12, AC13, AC19, AC24, AD1, AD6, AD19, AD24 E4, E5, E20, E21, F4, F5, F20, F21, G5, G20, V5, V20, W4, W5, W20, W21, Y4, Y5, Y20, Y21, AC8, AD9	Ground All ground pin must be connect to a one solid ground plane on evaluation board Common ground (analog + digital)		
VCC	A2, A23, B2, B23, C3, C5, C6, C19, C20, C22, D3, D6, D7, D18, D19, D22, E7, E18, K5, K20, M5, M20, N5, N20, R5, R20, Y7, Y10, Y15, Y18, AA3, AA6, AA7, AA10, AA15, AA18, AA19, AA22, AB3, $A B 5, A B 7, A B 10, A B 15$, AB18, AB20, AB22, AC2, AC23, AD2, AD23 AA14, AB14, Y14 AC9	Analog + SPI pads power supply (3.3V)		
VCCD	Y11, AB11, AA11	Digital power supply (1.8V)		
VCCO	D5, D20, E3, E6, E19, E22, F3, F22, H5, H20, U5, U20, W3, W22, Y3, Y6, Y19, Y22, AA5, AA20	Output power supply (1.8V)		

Table 5-1. \quad Pinout Table (Continued)

Pin Label	Pin Number (Continued)	Description	I/O	Simplified Electrical Schematics
Clock Signal				
CLK CLKN	AD12 AD13	In-phase input clock signal and out-ofphase input clock signal. Master input clock (Sampling clock). This is a differential clock with internal common mode at 1.8 V . It should be driven in AC coupling. Equivalent internal differential 100Ω input resistor.	1	
Analog Input Signals				
AAI AAIN	$\begin{aligned} & \text { A7 } \\ & \text { A8 } \end{aligned}$	In-phase analog input channel A. Out-of-phase analog input channel A	1	
BAI BAIN	$\begin{aligned} & \text { A10 } \\ & \text { A11 } \end{aligned}$	In phase analog input channel B. Out-of-phase analog input channel B	1	
CAI CAIN	$\begin{aligned} & \mathrm{A} 14 \\ & \mathrm{~A} 15 \end{aligned}$	In-phase analog input channel C. Out-of-phase analog input channel C	1	
DAI DAIN	$\begin{aligned} & \text { A17 } \\ & \text { A18 } \end{aligned}$	In-phase analog input channel D. Out-of-phase analog input channel D		
XAI XAIN		In phase analog input channel $\mathrm{X}(\mathrm{X}=\mathrm{A}$, B, C or D). Out-of-phase analog input channel X Analog input (differential) with internal common mode at 1.6 V (CMIRefAB/CD signal). It should be driven in AC coupling or DC coupling with CMIREFAB/CD output signal. XAI input is sampled and converted (10 bit) on each positive transition on the CLK Input. Equivalent internal differential 100Ω input resistor	1	
Digital output signals				
AO, AON A1, A1N A2, A2N A3, A3N A4, A4N A5, A5N A6, A6N A7, A7N A8, A8N A9, A9N	$\begin{aligned} & \text { M3, M4 } \\ & \text { L1, L2 } \\ & \text { L3, L4 } \\ & \text { K1, K2 } \\ & \text { K3, K4 } \\ & \text { J1, J2 } \\ & \text { J3, J4 } \\ & \text { H1, H2 } \\ & \text { A3, B3 } \\ & \text { A4, B4 } \end{aligned}$	Channel A in phase output data A0 is the LSB, A9 is the MSB. Channel A out of phase output data AON is the LSB, A9N is the MSB. This differential digital output data is transmitted at CLK/2 clock rate (1.25 Gbps max). Each of these outputs should always be terminated by 100Ω differential resistor placed as close as possible to differential receiver Differential LVDS signal	0	

Table 5-1. \quad Pinout Table (Continued)

Pin Label	Pin Number (Continued)	Description	I/O	Simplified Electrical Schematics
AOR AORN	$\begin{aligned} & \text { A5 } \\ & \text { B5 } \end{aligned}$	Channel A output out- of-range bit This differential output is asserted logic high while the over or under range condition exist for the channel A . Each of these outputs should always be terminated by 100Ω differential resistor placed as close as possible to differential receiver. Differential LVDS signal	0	
ADR ADRN	$\begin{aligned} & \text { M1 } \\ & \text { M2 } \end{aligned}$	Channel A output clock (data ready clock in DDR mode) This differential output clock is used to latch the output data on rising and falling edge. This differential digital output clock is at CLK/4 clock frequency (625 MHz max) should always be terminated by 100Ω differential resistor placed as close as possible to differential receiver Differential LVDS signal	0	
BO, BON B1, B1N B2, B2N B3, B3N- B4, B4N B5, B5N B6, B6N B7, B7N B8, B8N B9, B9N	N3, N4 P1, P2 P3, P4 R1, R2 R3, R4 T1, T2 T3, T4 U1, U2 AD3, AC3 AD4 AC4	Channel B in phase output data $B 0$ is the LSB, B9 is the MSB BON is the LSB, B9N is the MSB This differential digital output data is transmitted at CLK/2 clock rate (1.25Gbps max). Each of these outputs should always be terminated by 100Ω differential resistor place as close as possible to differential receiver Differential LVDS signal	0	
BOR BORN	$\begin{aligned} & \text { AD5 } \\ & \text { AC5 } \end{aligned}$	Channel B output Out of range bit This differential output is asserted logic high while the over or under range condition exist for the channel B Each of these outputs should always be terminated by 100Ω differential resistor placed as close as possible to differential receiver Differential LVDS signal	0	

Table 5-1. \quad Pinout Table (Continued)

Pin Label	Pin Number (Continued)	Description	I/O	Simplified Electrical Schematics
BDR BDRN	$\begin{aligned} & \text { N1 } \\ & \text { N2 } \end{aligned}$	Channel B Output clock This differential output clock is used to latch the output data on rising and falling edge. This differential digital output clock is at CLK/4 clock frequency (625 MHz max). should always be terminated by 100Ω differential resistor placed as close as possible to differential receiver Differential LVDS signal	O	
CO, CON C1, C1N C2, C2N C3, C3N C4, C4N C5, C5N C6, C6N C7, C7N C8, C8N C9, C9N	N22, N21 P24, P23 P22, P21 R24, R23 R22, R21 T24, T23 T22, T21 U24, U23 AD22, AC22 AD21, AC21	Channel C in phase output data C0 is the LSB, C9 is the MSB CON is the LSB, C9N is the MSB This differential digital output data is transmitted at CLK/2 clock rate (1.25Gbps max). Each of these outputs should always be terminated by 100Ω differential resistor placed as close as possible to differential receiver Differential LVDS signal	O	
$\begin{aligned} & \text { COR } \\ & \text { CORN } \end{aligned}$	$\begin{aligned} & \text { AD20 } \\ & \text { AC20 } \end{aligned}$	Channel C output Out of range bit. This differential output is asserted logic high while the over or under range condition exist for the channel C. Each of these outputs should always be terminated by 100Ω differential resistor placed as close as possible to differential receiver. Differential LVDS signal	O	
CDR CDRN	$\begin{aligned} & \mathrm{N} 24 \\ & \mathrm{~N} 23 \end{aligned}$	Channel C Output clock This differential output clock is used to latch the output data on rising and falling edge. This differential digital output clock is at CLK/4 clock frequency (625 MHz max). Should always be terminated by 100Ω differential resistor placed as close as possible to differential receiver Differential LVDS signal	O	

Table 5-1. \quad Pinout Table (Continued)

Pin Label	Pin Number (Continued)	Description	I/O	Simplified Electrical Schematics
DO, DON D1, D1N D2, D2N D3, D3N D4, D4N D5, D5N D6, D6N D7, D7N D8, D8N D9, D9N	M22, M21 L24, L23 L22, L21 K24, K23 K22, K21 J24, J23 J22, J21 H24, H23 A22, B22 A21, B21	Channel D in phase output data D0 is the LSB, D9 is the MSB DON is the LSB, D9N is the MSB This differential digital output data is transmitted at CLK/2 clock rate (1.25Gbps max). Each of these outputs should always be terminated by 100Ω differential resistor placed as close as possible to differential receiver Differential LVDS signal	0	
DOR DORN	$\begin{aligned} & \text { A20 } \\ & \text { B20 } \end{aligned}$	Channel D output out-of-range bit This differential output is asserted logic high while the over or under range condition exist for the channel D Each of these outputs should always be terminated by 100Ω differential resistor placed as close as possible to differential receiver Differential LVDS signal	0	
DDR DDRN	$\begin{aligned} & \text { M24 } \\ & \text { M23 } \end{aligned}$	Channel D Output clock This differential output clock is used to latch the output data on rising and falling edge. This differential digital output clock is at CLK/4 clock frequency (625 MHz max). should always be terminated by 100Ω differential resistor placed as close as possible to differential receiver Differential LVDS signal	0	

Table 5-1. Pinout Table (Continued)

Pin Label	Pin Number (Continued)	Description	1/0	Simplified Electrical Schematics
SPI Signals				
csn	AC16	SPI signal (3.3V CMOS) Input Chip Select signal (Active low) When this signal is active low, sclk is used to clock data present on MOSI or MISO signal Refer to section 6.6 for more information	I	
sclk	AD16	SPI signal (3.3V CMOS) Input SPI serial Clock Serial data is shifted into and out SPI synchronously to this signal on positive transition of sclk refer to Section 6.6 for more information	I	
mosi	AD17	SPI signal (3.3V CMOS) Data SPI Input signal (Master Out Slave In) Serial data input is shifted into SPI while sldn is active low Refer Section 6.6 for more information	I	Non-inverting CMOS Schmitt-trigger input
rstn	AC15	SPI signal (3.3V CMOS) Input Digital asynchronous SPI reset (Active low) This signal allows to reset the internal value of SPI to their default value Refer Section 6.6 for more information	I	
miso	AC17	SPI signal (3.3V CMOS) Data output SPI signal (Master In Slave Out) Serial data output is shifted out SPI while sldn is active low. MISO should be pulled up to V_{CC} using 1K - 3K3 resistor MISO not tristated when inactive Refer Section 6.6 for more information	O	
Other signals				
scan0 scan1 scan2	AD14 AC14 AD15	Scan mode signals (Used for internal purpose) Pull up to VCC		

Table 5-1. \quad Pinout Table (Continued)

Pin Label	Pin Number (Continued)	Description	I/O	Simplified Electrical Schematics
SYNCN SYNCP	AC11 AD11	Differential Input Synchronization signal (LVDS) Active high signal This signal is used to synchronize external ADC, Refer to Section 6.6 for more information Equivalent internal differential 100Ω input resistor	I	
Res50 Res62	AD18 AC18	50Ω and 62Ω reference resistor input Refer Section 6.5 for more information		
CMIRefAB CMIRefCD	$\begin{aligned} & \mathrm{B} 12 \\ & \mathrm{~B} 13 \end{aligned}$	Output voltage reference for Channel A-B and C-D Input Common mode In AC coupling operation this output could be left floating (not used) In DC coupling operation, this pins provides an output voltage witch is the common mode voltage for the analog input signal and should be used to set the common mode voltage of the input driving buffer. CMIRefAB for A and B channel CMIRefCD for C and D channel	0	

EV10AQ190A

Table 5-1. \quad Pinout Table (Continued)

Pin Label	Pin Number (Continued)	Description	I/O	Simplified Electrical Schematics
DiodA DiodC	$\begin{aligned} & \mathrm{AD7} \\ & \mathrm{AC7} \end{aligned}$	Input Temperature diode Anode Input Temperature diode Cathode Refer Section 6.4 for more information	1	Diode C Diode A
			O	
NC	C1, C2, C23, C24, D1, D2, D23, D24, E1, E2, E23, E24, F1, F2, F23, F24, G1, G2, G3, G4, G21, G22, G23, G24, H3, H4, H21, H22, U3, U4, U21, U22, V1, V2, V3, V4, V21, V22, V23, V24, W1, W2, W23, W24, Y1, Y2, Y23, Y24, AA1, AA2, AA23, AA24, AB1, AB2, AB23, AB24, AD10, AD8, AC10	Reserved pins Do not connect		

6. Functional Description

6.1 Overview

Table 6-1. Functions Description

6.2 ADC Synchronization Signal (SYNCP, SYNCN)

The SYNCP, SYNCN signal has LVDS electrical characteristics. It is active high and should last at least TSYNC clock cycles to work properly.

This signal is used for internal synchronization. Its behavior is selectable via SPI (RM and SYNC registers).

The SYNC register allows for expanding the internal SYNC signal in order to align different chips for multi-channel applications. This additional time can be programmed from 0 to 15 input clock cycles.

The RM bit (Control register) describes the behavior of the SYNC signal:

- If RM is set to LOW, internal clocks are locked while SYNC is active
- If RM is set to HIGH, internal clocks will continue toggling during SYNC and will be resynchronized only at falling edge of SYNC. (this is to prevent to unlock PLL on data).
The SYNCP, SYNCN pulse is mandatory whenever the following ADC modes are changed: Standby, DMUX mode, Test mode (2), Channel mode. For all other ADC modes there is no need to perform a SYNCP, SYNCN pulse.

Examples:

The SYNCP, SYNCN pulse is mandatory after power up or power configuration: when switching the ADC from standby (full or partial) to normal mode.

The SYNCP, SYNCN pulse is mandatory after channel mode configuration: when switching the ADC from four-channel mode to one-channel mode.

The SYNCP, SYNCN pulse is mandatory for test sequence: when switching the ADC from normal running mode to ramp or flashing mode (see in normal mode test resources are powered down and need to be reinitialized after entering in test mode) but it is no needed when the ADC is switched from test mode (ramp or flashing), to normal running mode.

Notes: 1. In decimation mode, the SYNCP,SYNCN signal also resets the clock dividers for decimation, therefore data outputs are not refreshed or may be corrupted when SYNC,SYNCN is active.
2. SYNCP, SYNCN pulse is not needed from Test mode to Normal mode. For details regarding synchronization of multiple converters see Application Note "Synchronization of Multiple EV10AQ190".
3. To avoid metastability problems on internal SYNC signals, it is mandatory to respect SYNC T1 and T2 time (see Table 3-7), as no transition of the SYNC signal is allowed between T1 and T2 time. Please refer to Figure $6-3$ on page 39.

Figure 6-1. ADC SYNC Timing in Four-channel Mode, RM=0, SYNC Register $y=3$ (Tunable 0 to 15 Cycles)

EV10AQ190A

Figure 6-2. ADC SYNC Timing in Four-channel Mode, RM=1, SYNC Register $y=3$ (Tunable 0 to 15 Cycles)

Figure 6-3. ADC SYNC Timing Condition

EV10AQ190A

6.3 Digital Scan Mode (SCAN[2:0])

These signals allow to perform a scan of the digital part of the ADC.
For e2v use only.
Pull up to V_{cc}.

6.4 Die Junction Temperature Monitoring Diode

DIODA, DIODC: two pins are provided so that the diode can be probed using standard temperature sensors.

Figure 6-4. Junction Temperature Monitoring Diode System

Note: If the diode function is not used, DIODA and DIODC can be left unconnected (open).

Figure 6-5. Junction Temperature versus Diode Voltage for $1=\mathrm{mA}$
ADC Quad 10bit 1.25 Gsps
Junction Temperature Versus Diode voltage for I=1mA

6.5 Res50 and Res62

The Res50 and Res62 correspond to the input of internal 50Ω and 62Ω reference resistors that are used to check the process deviation.

The idea is to inject a current into pin Res50, measure the voltage across Res50 and nearest ground pin (AD19), same process should be used for Res62.

You then have two equations with two unknown parameters:
Res50 $=\mathrm{k} \times 50+\mathrm{e} 1$
Res62 $=\mathrm{k} \times 62+\mathrm{e} 2$

- Where k is due to the process
- Where e1 and e2 are due to the measurement errors

Assuming that $\mathrm{e} 1=\mathrm{e} 2$ since the same process is used to measure both Res50 and Res62 in the same conditions, you can obtain the k factor by working out this equation, which helps you determine if you need to compensate for the process by increasing or decreasing the resistors value (TRIMMER register at address 0×13) of the input resistors (there are two 50Ω resistors per analog input channel).
Note: If the Res50, Res62 function is not used, Res50 and Res62 can be left unconnected (open).
The two pins Res62 and Res50 are for checking the actual centering of the process.
The two point measurement reduces measurement errors. Since the current circulating through ground in normal operation is about 1.25 A , a shift of 10 mV on the pins RES62 and RES50 is consistent.

One way to get rid of the shift in IR-drop to ground when measuring RES62 of RES50 at actual operational temperature is to use a two step measurement (circuit being normally powered):

1. Measure the voltage of these two pins regarding board ground without injecting any current (yields Vres62_0mA and Vres50_0mA, which should be at the same value: the actual ground level in die)
2. Measure the voltage of these two pins regarding board ground injecting sequentially 2 mA in these pins this yields Vres62_2ma and Vres50_2mA
Subtracting the actual resistance would then yield R62=(Vres62_2mA - Vres62_0mA)/2mA and measR50=(Vres50_2mA - Vres50_0mA)/2mA. This should minimize the systematic error.

Note: When computing the systematic error an accumulated misreading of $\pm 0.1 \Omega$ on measR50 and measRes62 can lead to a fluctuation of $\pm 1 \Omega$ in the estimation of the systematic error "e" (for obvious physical reasons "e" cannot be negative, because it represents parasitic resistance between the measure resistor and the measurement apparatus), and of fluctuation of ± 0.01666 in the estimation of " k ".

The measurement of actual input resistance is somehow easier since we have access to both terminals, but of course due to the trimming system this measurement must be performed with the ADC powered.

Performing the measurement as described above should reduce the discrepancy between computed value and measured value for input impedance (all resistors are now measured at similar temperatures).

Due to extra routing between pad and termination resistor for analog inputs the measured differential value should be $\sim 2 \Omega$ above the computed value. As a consequence we should revise the formula for input impedance given in section Section 6.6.14 as follows:

The trimming is meant to compensate for die process deviation (accepted value by foundry is $\pm 15 \%$), after trimming it is always possible to reach the 50Ω (100Ω differential) value $\pm 2 \%$ which is consistent with accepted tolerance of discrete passive devices.

EV10AQ190A

When the die process is well centered (that is when k is close enough to 1) no trimming is necessary (default programming is OK) except if due to PCB process issues the actual input trace impedance deviates significantly from 50Ω and need to me matched internally.

The same trimming value should be applied for parts yielding the same measured values for RES62 and RES50.

6.6 Quad ADC Digital Interface (SPI)

The digital interface will be a 3 -wire SPI style (3.3 V CMOS pads, 1.8 V core) with:

- 8 bits for the address $A[7]$ to $A[0]$ including a R / W bit ($A[7]=R / W$ and is the $M S B$)
- 16 bits of data $\mathrm{D}[15]$ to $\mathrm{D}[0]$ with $\mathrm{D}[15]$ the MSB.

Five signals are required:

- RSTN for the SPI reset
- SCLK for the SPI clock
- CSN for the chip select
- MISO for the Master In Slave Our SPI Output (MISO should be pulled up to V_{CC} using $1 \mathrm{~K}-3 \mathrm{~K} 3$ resistor
- MOSI for the Master Out Slave In SPI Input

The MOSI sequence should start with one R/W bit:

- R/W = " 0 " is a read procedure
- $\mathrm{R} / \mathrm{W}=$ " 1 " is a write procedure

6.6.1 Timings

Figure 6-6. Register Write to a 16-bit Register

Note: Last falling edge of sclk should occur only once csn is back to high level at the end of the write procedure.

Figure 6-7. Register Read from a 16-bit Register

$\mathrm{T}_{\text {CSN_END }}=\mathrm{T}_{\text {SCLK }} / 4=12.5 \mathrm{~ns}^{(3)}$

Table 6-2. Timing Characteristics

Pin	Max Frequency	Setup ${ }^{(1)}$	Hold $^{(1)}$	TPD Propagation Time
SCLK	20 MHz			
CSN (to SCLK) (see note 2)		1 ns	1 ns	
MOSI (to SCLK)		1.2 ns	1.0 ns	$\min 1.5 \mathrm{~ns} / \mathrm{max} 4 \mathrm{~ns}$
MISO (to SCLK)				

Notes: 1. First value is in minimum conditions, second value is in maximum conditions.
2. Setup/Hold to both SCLK edges.
3. Last falling edge of sclk should occur once csn is set to 1 , due to an internal operation.

6.6.2 Digital Reset (RSTN)

This is a global Reset for the SPI.
It is active low.
There are two methods to reset the Quad 10-bit 1.25 Gsps ADC:

- By asserting low the rstn primary pad (hardware reset)
- By writing A 1 In the bit swreset of the swreset register through the spi (software reset)

Both methods will clear all configuration registers to their reset values.

6.6.3 Registers Description

Table 6-3. Registers Mapping

Address	Label	Description	R/W	Default Setting
Common Registers				
0x00	Chip ID	Chip ID and version	Read only	0x0418 (EV10AQ190xTPY) 0x041C (EV10AQ190AxTPY)
0x01	Control Register	ADC mode (channel mode) Standby Binary/Gray Test Mode ON/OFF Bandwidth Selection Reset Mode (RM)	R/W	Four-channel mode (1.25 Gsps) No standby Binary coding Test mode OFF Nominal bandwidth Locked during SYNC
0x02	STATUS	Status register	Read Only	
0x04	SWRESET	Software SPI reset	R/W	No reset
0x05	TEST	Test Mode	R/W	Test Pattern = ramp
0x06	SYNC	Programmable delay on ADC Data Ready after Reset XDR, XDRN (4 bits), with $X=A, B, C, D$	R/W	0 extra clock cycle
0x0F	Channel Select	Channel X Selection	R/W	0x0000
Per Channel Registers (X=A/B/C/D)				
0x10	Cal Ctrl X	Calibration control register of channel X	R/W	
0x11	Cal Ctrl X Mlbx	Status/Busy of current calibration of Channel X	Read only (poll)	
0x12	Status X	Global Status of channel X	Read Only	
0x13	Trimmer X	Impedance trimmer of channel X	R/W	0x07
0x20	Ext Offset X	External Offset Adjustment of Channel X	R/W	0 LSB
0x21	Offset X	Offset Adjustment of Channel X	Read Only	0 LSB
0x22	Ext Gain X	External Gain Adjustment of Channel X	R/W	0 dB
0×23	Gain X	Gain Adjustment of Channel X	Read Only	0 dB
0x24	Ext Phase X	External Phase Adjustment of Channel X	R/W	0 ps
0x25	Phase X	Phase Adjustment of Channel X	Read Only	0 ps

Notes: 1. All registers are 16 -bits long.
2. The external gain/offset/phase adjustment registers correspond to the registers where one can write the external values to calibrate the gain/offset/phase parameters of the ADCs. The Gain/offset/phase adjustment registers are read only registers. They provide you with the internal settings for the gain/offset/phase parameters. The external and read only adjustment registers should give the same results two by two once any calibration has been performed.

6.6.4 Chip ID Register (Read Only)

Table 6-4. Chip ID Register Mapping: Address 0x00

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TYPE								BRANCH<3:0>				VERSION<3:0>			

Table 6-5. Chip ID Register Description

Bit label	Value	Description	Default Setting
VERSION $<3: 0>$	0100	Version Number	
BRANCH<3:0>	0001	Branch Number	See (Note:)
TYPE $<7: 0>$	00001000	Chip Type	

Note: $\quad 0 x 0418=$ EV10AQ190xTPY, $0 x 041 C=E V 10 A Q 190 A x T P Y$ where x is for the C or V grade.

6.6.5 Control Register

Table 6-6. Control Register Mapping: address 0x01

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Unused<1:0>		0	TEST	0	RM	Unused	BDW	B/G	Unused	STDBY <1:0>		ADCMODE <3:0>			

Table 6-7. Control Register Description

Bit label	Value	Description	Default Setting
$\begin{aligned} & \text { ADCMODE } \\ & <3: 0> \end{aligned}$	00XX	Four-channel mode (1.25 Gsps per channel)	0000 Four-channel mode
	0100	Two-channel mode (channel A and channel C, 2.5 Gsps per channel)	
	0101	One-channel mode (channel B and channel C, 2.5 Gsps per channel)	
	0110	Two-channel mode (channel A and channel D, 2.5 Gsps per channel)	
	0111	Two-channel mode (channel B and channel D, 2.5 Gsps per channel)	
	1000	One-channel mode (channel A, 5 Gsps)	
	1001	One-channel mode (channel B, 5 Gsps)	
	1010	One-channel mode (channel C, 5 Gsps)	
	1011	One-channel mode (channel D, 5 Gsps)	
	1100	Common input mode, simultaneous sampling (channel A)	
	1101	Common input mode, simultaneous sampling (channel B)	
	1110	Common input mode, simultaneous sampling (channel C)	
	1111	Common input mode, simultaneous sampling (channel D)	

Table 6-7. Control Register Description (Continued)

STDBY <1:0>	00	Full Active Mode	00 Full active mode
	01	Standby channel A/channel B: - if four-channel mode selected then standby of channel A and B - if two-channel mode selected then standby of channel A or B - if one-channel mode selected then full standby - if Common input mode selected then full standby	
	10	Standby channel C/channel D - if four-channel mode selected then standby of channel C and D - if two-channel mode selected then standby of channel C or D - if one-channel mode selected then full standby - if common input mode selected then full standby	
	11	Full standby	
B/G	0	Binary	0 Binary coding
	1	Gray	
BDW	0	Nominal bandwidth (1 GHz typical)	0 Nominal bandwidth
	1	Full bandwidth	
TEST	0	No Test Mode	0 No test mode
	1	Test Mode Activated, Refer to the Test register	
$\mathrm{RM}^{(1)}$	0	Internal clocks does not toggle, while SYNC is active	0
	1	Mode without STOP of internal clocks \& DataREADY while SYNC is active	

Notes: 1. This mode is not available on the EV10AQ190xTPY revision.
2. In application using $\mathrm{RM}=1$, only codes from SYNC[0001] to SYNC[1111] are allowed.

Table 6-8. Control Register Settings (Address 0x01: Bit7 to Bit0

Description	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Label	B/G	Unused	STDBY <1:0>		ADCMODE <3:0>			
Four-channel mode 1.25 Gsps max per channel	X	X	X	X	0	0	X	X
Two-channel mode (channel A and channel C) 2.5 Gsps max per channel	X	X	X	X	0	1	0	0
Two-channel mode (channel B and channel C) 2.5 Gsps max per channel	X	X	X	X	0	1	0	1
Two-channel mode (channel A and channel D) 2.5 Gsps max per channel	X	X	X	X	0	1	1	0
Two-channel mode (channel B and channel D) 2.5 Gsps max per channel	X	X	X	X	0	1	1	1
One-channel mode (Channel A, 5 Gsps max)	X	X	X	X	1	0	0	0
One-channel mode (Channel B, 5 Gsps)	X	X	X	X	1	0	0	1
One-channel mode (Channel C, 5 Gsps)	X	X	X	X	1	0	1	0
One-channel mode (Channel D, 5 Gsps)	X	X	X	X	1	0	1	1
Common input mode, simultaneous sampling 1.25 Gsps max (channel A)	X	X	X	X	1	1	0	0
Common input mode, simultaneous sampling 1.25 Gsps max (channel B)	X	X	X	X	1	1	0	1
Common input mode, simultaneous sampling 1.25 Gsps max (channel C)	X	X	X	X	1	1	1	0
Common input mode, simultaneous sampling 1.25 Gsps max (channel D)	X	X	X	X	1	1	1	1
No standby	X	X	0	0	X	X	X	X
Standby channel A, channel B	X	X	0	1	X	X	X	X
Standby channel C, channel D	X	X	1	0	X	X	X	X
Full standby	X	X	1	1	X	X	X	X
Binary coding	0	X	X	X	X	X	X	X
Gray coding	1	X	X	X	X	X	X	X

Table 6-9. Control Register Settings (address 0x01): Bit15 to Bit8

Description	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
Label	Unused<1:0>		Reserved	TEST	Reserved	Unused	Unused	BDW
Nominal bandwidth	X	X	0	X	0	X	X	0
Full bandwidth	X	X	0	X	0	X	X	1
Test Mode OFF	X	X	0	0	0	X	X	X
Test Mode ON	X	X	0	1	0	X	X	X

Note: It is mandatory to apply a SYNCP, SYNCN signal to the ADC when the Test Mode is activated.

Table 6-10. ADCMODE and STBY Allowed Combinations

Description	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Label	B/G	Unuse d	STDBY <1:0>		ADCMODE <3:0>			
Four-channel mode, 1.25 Gsps max No standby	X	X	0	0	0	0	X	X
Four-channel mode,1.25 Gsps max Standby channel A, channel B	X	X	0	1	0	0	X	X
Four-channel mode, 1.25 Gsps max Standby channel C, channel D	X	X	1	0	0	0	X	X
Four-channel mode (1.25 Gsps max) Full standby	X	X	1	1	0	0	X	X
Two-channel mode, 2.5 Gsps max (channel A and C) No standby	X	X	0	0	0	1	0	0
Two-channel mode, 2.5 Gsps max (channel A and C) Standby channel A	X	X	0	1	0	1	0	0
Two-channel mode, 2.5 Gsps max (channel A and C) Standby channel C	X	X	1	0	0	1	0	0
Two-channel mode, 2.5 Gsps max (channel A and C) Full standby	X	X	1	1	0	1	0	0
Two-channel mode, 2.5 Gsps max (channel B and C) No standby	X	X	0	0	0	1	0	1
Two-channel mode, 2.5 Gsps max (channel B and C) Standby channel B	X	X	0	1	0	1	0	1
Two-channel mode, 2.5Gsps max (channel B and C) Standby channel C	X	X	1	0	0	1	0	1
Two-channel mode, 2.5 Gsps max (channel B and C) Full standby	X	X	1	1	0	1	0	1
Two-channel mode, 2.5 Gsps max (channel A and D) No standby	X	X	0	0	0	1	1	0
Two-channel mode, 2.5 Gsps max (channel A and D) Standby channel A	X	X	0	1	0	1	1	0
Two-channel mode, 2.5 Gsps max (channel A and D) Standby channel D	X	X	1	0	0	1	1	0
Two-channel mode, 2.5 Gsps max (channel A and D) Full standby	X	X	1	1	0	1	1	0
Two-channel mode, 2.5Gsps max (channel B and D) No standby	X	X	0	0	0	1	1	1
Two-channel mode, 2.5 Gsps max (channel B and D) Standby channel B	X	X	0	1	0	1	1	1
Two-channel mode, 2.5Gsps max (channel B and D) Standby channel D	X	X	1	0	0	1	1	1
Two-channel mode, 2.5 Gsps max (channel B and D) Full standby	X	X	1	1	0	1	1	1

Table 6-10. ADCMODE and STBY Allowed Combinations (Continued)

6.6.6 STATUS Register (Read Only)

Table 6-11. STATUS Register Mapping: Address 0x02

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Unused												ADCXUP<3:0>			

Table 6-12. STATUS Register Description

Bit label	Value	Description	Default Setting
ADCXUP<3:0>	XXXO	ADC A standby	1111
	XXX1	ADC A active	
	XX0X	ADC B standby	
	XX1X	ADC B active	
	X0XX	ADC C standby	
	X1XX	ADC C active	
	OXXX	ADC D standby	
	1XXX	ADC D active	

6.6.7 SWRESET Register

Table 6-13. SWRESET Register Mapping: address 0x04

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Unused															SWRESET

Table 6-14. SWRESET Register Description

Bit label	Value	Description	Default Setting
SWRESET	0	No Software Reset	0
	1	Unconditional Software Reset (see Note)	No software reset

Note: Global Software Reset will reset ALL design registers (configuration registers as well as any flip-flop in the digital part of the design). This bit is automatically reset to 0 after some ns. There is no need to clear it by an external access.

6.6.8 TEST Register

Table 6-15. TEST Register Mapping: address 0x05

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Unused									Unused		"00"		FlashM		TESTM

Table 6-16. TEST Register Description

Bit label	Value	Description	Default Setting
TESTM	0	Increasing (simultaneous) ramp 11bit (0 up to 2047)	0 Increasing ramp
	1	Flashing mode (refer to Bit 1 and Bit 2 to select the flashing 1 period)	
FlashM	00	Flashing 11 mode $=1$ (7 FF pattern every ten 00 patterns) on each ADC	00 Flashing 11 mode
	01	Flashing 12 mode $=1$ (7 FF pattern every eleven 00 patterns) on each ADC	
	10	Flashing 16 mode $=1$ (7 FF pattern every fifteen 00 patterns) on each ADC	

Notes: 1. TESTM is taken into account only if bit12 (TEST) of Control register (address 0x01) is at 1.
2. It is mandatory to apply a SYNCP, SYNCN signal to the ADC when the Test Mode is activated.
3. When Bit 0 is set to 1 , it is necessary to choose the flashing 1 period (11, 12 or 16) using Bit 1 and bit 2 . The default flashing mode is the one with 11 period.
4. Flashing mode 7FF pattern on 11bit (Out of rage bit + data 10-bit).
5. Ramp mode: 11 bit (Out of range bit + data 10-bit).

Figure 6-8. Ramp Mode

Notes: 1. $\mathrm{X}=\mathrm{A}, \mathrm{B}, \mathrm{C}$ or D
2. When the ramp Test mode is activated and during reset, the outputs stay at the value before reset.

Table 6-17. Ramp Mode Coding (Binary Counting)

XOR	X9	X8	X7	X6	X5	X4	X3	X2	X1	X0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	0	1	1
0	0	0	0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	0	1	0	1
...										
1	1	1	1	1	1	1	1	1	0	1
1	1	1	1	1	1	1	1	1	1	0
1	1	1	1	1	1	1	1	1	1	1
0	0	0	0	0	0	0	0	0	0	0

Note: $\quad X=A, B, C$ or D

Figure 6-9. Flashing Mode (11 Mode)

Notes: 1. $\mathrm{X}=\mathrm{A}, \mathrm{B}, \mathrm{C}$ or D
2. $i=0,1,2 \ldots, 8,9$
3. In flashing 12 and 16 modes, 11 internal clock cycles becomes 12 and 16 respectively.

Table 6-18. Flashing Mode Coding (11 mode)

Cycle	XOR	X9	X8	X7	X6	X5	X4	X3	X2	X1	X0
N	1	1	1	1	1	1	1	1	1	1	1
$N+1$	0	0	0	0	0	0	0	0	0	0	0
$N+2$	0	0	0	0	0	0	0	0	0	0	0
$N+3$	0	0	0	0	0	0	0	0	0	0	0
$N+4$	0	0	0	0	0	0	0	0	0	0	0
$N+5$	0	0	0	0	0	0	0	0	0	0	0
$N+6$	0	0	0	0	0	0	0	0	0	0	0
$N+7$	0	0	0	0	0	0	0	0	0	0	0
$N+8$	0	0	0	0	0	0	0	0	0	0	0
$N+9$	0	0	0	0	0	0	0	0	0	0	0
$N+10$	0	0	0	0	0	0	0	0	0	0	0
$N+11$	1	1	1	1	1	1	1	1	1	1	1
$N+12$	0	0	0	0	0	0	0	0	0	0	0

Note: $\quad X=A, B, C$ or D

6.6.9 SYNC Register Mapping

Table 6-19. SYNC Register Mapping: Address 0x06

$\begin{aligned} & \text { Bit } \\ & 15 \end{aligned}$	$\begin{aligned} & \text { Bit } \\ & 14 \end{aligned}$	$\begin{aligned} & \text { Bit } \\ & 13 \end{aligned}$	$\begin{aligned} & \text { Bit } \\ & 12 \end{aligned}$	$\begin{aligned} & \text { Bit } \\ & 11 \end{aligned}$	$\begin{aligned} & \text { Bit } \\ & 10 \end{aligned}$	$\begin{aligned} & \text { Bit } \\ & 9 \end{aligned}$	$\begin{aligned} & \text { Bit } \\ & 8 \end{aligned}$	$\begin{aligned} & \text { Bit } \\ & 7 \end{aligned}$	$\begin{aligned} & \text { Bit } \\ & 6 \end{aligned}$	$\begin{aligned} & \text { Bit } \\ & 5 \end{aligned}$	$\begin{aligned} & \text { Bit } \\ & 4 \end{aligned}$	$\begin{aligned} & \text { Bit } \\ & 3 \end{aligned}$	$\begin{aligned} & \text { Bit } \\ & 2 \end{aligned}$	$\begin{aligned} & \text { Bit } \\ & 1 \end{aligned}$	$\begin{aligned} & \text { Bit } \\ & 0 \end{aligned}$
Unused												SYNC<3:0>			

Table 6-20. SYNC Register Description

Bit label	Value	Description	Default Setting
SYNC<3:0>	0000	0 extra external clock cycle (CLK) before starting up	$0000^{(1)}$ 0 Clock Cycle
	0001	1 extra external clock cycle (CLK) before starting up	
	\ldots	\ldots	
	1111	15 extra external clock cycles (CLK) before starting up	

Note: 1. In application using RM $=1$, only codes from $\operatorname{SYNC}[0001]$ to $\operatorname{SYNC}[1111]$ are allowed.

6.6.10 CHANNEL SELECTOR Register

Table 6-21. CHANNEL SELECTOR Register Mapping: address 0x0F

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Unused													Channel Selector <2:0>		

Table 6-22. CHANNEL SELECTOR Register Description

Bit Label	Value	Description	Default Setting
Channel Selector $<2: 0>$	000	No channel selected (only common registers are accessible)	
	001	Channel A selected to access to per-channel registers	
	010	Channel B selected to access to per-channel registers	000
	011	Channel C selected to access to per-channel registers	
	100	Channel D selected to access to per-channel registers	
	Any others	No channel selected (only common registers are accessible)	

Note: The CHANNEL SELECTOR register should be set before any access to per-channel registers in order to determine which channel is targeted.

6.6.11 CAL Control Registers

Applies to CAL Control registers A, B, C and D according to CHANNEL SELECTOR register contents.
Table 6-23. CAL Control Register Mapping: address 0×10

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Unused								$\begin{gathered} \text { PCALCTRL X } \\ <1: 0> \end{gathered}$		$\begin{gathered} \text { GCALCTRL X } \\ <1: 0> \end{gathered}$		$\begin{gathered} \text { OCALCTRL X } \\ <1: 0> \end{gathered}$		"00"	

Table 6-24. CAL Control Register Description

Bit Label	Value	Description	Default Setting
OCALCTRL X < 1:0>	00	Idle mode for selected channel	00
	01	Idle mode for selected channel	
	10	External Offset adjust for selected channel (transfer of Ext Offset register content into current Offset register)	
	11	Idle mode for selected channel	
GCALCTRL X < 1:0>	00	Idle mode for selected channel	00
	01	Idle mode for selected channel	
	10	External Gain adjust for selected channel (transfer of Ext Gain register content into current Gain register)	
	11	Idle mode for selected channel	
PCALCTRL X <1:0>	00	Idle mode for selected channel	00
	01	Idle mode for selected channel	
	10	External Phase adjust for selected channel (transfer of Ext Phase register content into current Phase register)	
	11	Idle mode for selected channel	

Notes: 1. Writing to the register will start the corresponding operation(s). In that case, the Status/Busy bit of the mailbox (see below) is asserted until the operation is over. (At the end of a calibration/tuning process, CAL Control register relevant bit slice is NOT reset to default value.)
2. If different calibrations are ordered, they are performed successively following the priority order defined hereafter.
-Gain has priority over Offset, and Phase
-Offset has priority over Phase
Indeed, the transfer function of the ADC is given by the following formula transfer function result = offset + (input gain).

6.6.12 CAL Control Registers Mailbox (Read Only)

Applies to CAL Control Registers Mailbox A, B, C and D according to CHANNEL SELECTOR register contents.

Table 6-25. CAL Control Registers Mailbox Register Mapping: address 0x11

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Unused<12:0>															STATUS/ BUSY X

6.6.13 GLOBAL STATUS Register (Read Only)

Applies to GLOBAL STATUS registers A, B, C and D according to CHANNEL SELECTOR register contents.

Table 6-26. GLOBAL STATUS Register Mapping: address 0x12

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Unused															$\begin{gathered} \text { STBY } \\ \text { X } \end{gathered}$

Table 6-27. GLOBAL STATUS Register Description

Bit label	Value	Description	Default Setting
STBY X	0	Selected Channel is in standby	0
	1	Selected Channel is active	

6.6.14 TRIMMER Register

Applies to TRIMMER registers A, B, C and D according to CHANNEL SELECTOR register contents
Table 6-28. TRIMMER Register Mapping: address 0×13

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Unused												TRIMMER $\mathrm{X}<3: 0$ >			

Table 6-29. TRIMMER Register Description

Bit Label	Value	Description	Default Setting
$\begin{aligned} & \text { TRIMMER X } \\ & <3: 0> \end{aligned}$	0000	+10.00 Ω	$\left\lvert\, \begin{aligned} & 0111 \\ & 50 \Omega \end{aligned}\right.$
	0001	$+8.34 \Omega$	
	0010	$+6.77 \Omega$	
	0011	$+5.29 \Omega$	
	0100	$+3.89 \Omega$	
	0101	$+2.57 \Omega$	
	0110	$+1.31 \Omega$	
	0111	$+0.11 \Omega$	
	1000	-1.03Ω	
	1001	-2.12Ω	
	1010	-3.15Ω	
	1011	-4.14Ω	
	1100	-5.09Ω	
	1101	-5.99Ω	
	1110	-6.86Ω	
	1111	-7.69Ω	

Note: $\quad R=3+(114 /[2+0.06 \times(8 \times$ bit3 $+4 \times$ bit2 $+2 x$ bit1 $+1 \times$ bit0 $)])$ - the practical results (simulated) are not exactly the ones given above.

EV10AQ190A

6.6.15 External Offset Registers

Apply to External Offset Registers A, B, C and D according to CHANNEL SELECTOR register contents.
Table 6-30. External Offset Control Register Mapping: address 0×20

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Unused						EXTERNAL OFFSET $\mathrm{X}<9: 0>{ }^{(1)(2)(3)}$									

Table 6-31. External Offset Control Register Description

Bit label	Value	Description	Default Setting
EXTERNAL OFFSET $X<9: 0>$	0×000	Maximum positive offset applied	
	$0 \times 1 F F$	Minimum positive offset applied	0×200
	0×200	Minimum negative offset applied	
	$0 \times 3 F F$	Maximum negative offset applied	

Notes: 1. Offset variation range: $\sim \pm 40$ LSB, 1024 steps.
2. Current offset of the selected channel is controlled by the External Offset Control Register but is updated only upon request placed through the SPI in the CAL control register of the selected channel.
3. The transfer function of the ADC is given by the following formula transfer function result $=$ offset + (input gain).

6.6.16 Offset Registers (Read Only)

Apply to Offset Registers A, B, C and D according to CHANNEL SELECTOR register contents.
Table 6-32. Offset Control Register Mapping: address 0x21

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Unused						OFFSET X <9:0> (See Notes)									

Table 6-33. Offset Control Register Description

Bit Label	Value	Description	Default Setting
OFFSET $X<9: 0 \gg$	0×000	Maximum positive offset applied	0×200
	$0 \times 1 F F$	Minimum positive offset applied	
	0×200	Minimum negative offset applied	
	$0 \times 3 F F$	Maximum negative offset applied	

Notes: 1. Offset variation range: $\sim \pm 40$ LSB, 1024 steps.
2. Current offset of the selected channel is controlled by the External Offset Control Register but is updated only upon request placed through the SPI in the CAL control register of the selected channel.
3. The transfer function of the ADC is given by the following formula transfer function result = offset + (input gain).

6.6.17 External Gain Control Registers

Apply to External Gain Control registers A, B, C and D according to CHANNEL SELECTOR register contents.

Table 6-34. External Gain Control Register Mapping: address 0x22

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Unused						EXTERNAL GAIN X <9:0> ${ }^{(1)(2)(3)}$									

Table 6-35. External Gain Control Register Description

Bit Label	Value	Description	Default Setting
EXTERNAL GAIN $X<9: 0>$	0×000	Gain shrunk to min accessible value	
	0×200	Gain at Default value (no correction, actual gain follow process scattering)	0x200
	$\ldots .$.		
	$0 \times 3 F F$	Gain Increased to max accessible value	

Notes: 1. Gain variation range: $\sim \pm 10 \%, 1024$ steps (1 step $\sim 0.02 \%$).
2. Current gain of the selected channel is controlled by the External Gain Control Register but is updated only upon request placed through the SPI in the CAL control register of the selected channel.
3. The transfer function of the ADC is given by the following formula transfer function result = offset + (input gain).

6.6.18 Gain Control Registers (Read Only)

Apply to Gain Control registers A, B, C and D according to CHANNEL SELECTOR register contents.
Table 6-36. Gain Control Register Mapping: address 0×23

Table 6-37. Gain Control Register Description

Bit label	Value	Description	Default Setting
GAIN $X<9: 0>$	0×000	Gain shrunk to min accessible value	
	0×200	Gain at Default value (no correction, actual gain follow process scattering)	0×200
	$\ldots .$.		
	$0 \times 3 F F$	Gain Increased to max accessible value	

Notes: 1. Gain variation range: $\sim \pm 10 \%, 1024$ steps (1 step $\sim 0.02 \%$).
2. Current gain of the selected channel is controlled by the External Gain Control Register but is updated only upon request placed through the SPI in the CAL control register of the selected channel.
3. The transfer function of the ADC is given by the following formula transfer function result $=$ offset + (input x gain).

6.6.19 External Phase Registers

Apply to phase registers A, B, C and D according to CHANNEL SELECTOR register contents.
Table 6-38. External Phase Register Mapping: address 0x24

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Unused						EXTERNAL PHASE $X<9: 0>^{(1)(2)}$									

Table 6-39. Table External Offset Control Register Description

Bit Label	Value	Description	Default Setting
EXTERNAL PHASE $X<9: 0>$	0×000	$\sim-15 p s$ correction on selected channel aperture Delay	0x200
	$\ldots \times 3 F F$	$\sim+15 p s$ correction on selected channel aperture Delay	

Notes: 1. Delay control range for edges of internal sampling clocks: $\sim \pm 15 \mathrm{ps}$ (1 step $\sim 30 \mathrm{fs}$).
2. Actual Aperture Delay of the selected channel is controlled by the External Phase Control Register but is updated only upon request placed through the SPI in the CAL control register of the selected channel.

6.6.20 Phase Registers (Read Only)

Apply to Phase Registers A, B, C and D according to CHANNEL SELECTOR register contents.
Table 6-40. Phase Register Mapping: address 0x25

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Unused						PHASE X <9:0> (See Notes)									

Table 6-41. Phase Control Register Description

Bit Label	Value	Description	Default Setting
PHASE $X<9: 0>$	0×000	$\sim-15 p s$ correction on selected channel aperture Delay	0×200
	Ops correction		

Notes: 1. Delay control range for edges of internal sampling clocks: $\sim \pm 15 \mathrm{ps}$ (1 step $\sim 30 \mathrm{fs}$).
2. Actual Aperture Delay of the selected channel is controlled by the External Phase Control Register but is updated only upon request placed through the SPI in the CAL control register of the selected channel.

7. Application Information

7.1 Bypassing, Decoupling and Grounding

All power supplies should be decoupled to ground as close as possible to the signal accesses to the board by $2.2 \mu \mathrm{~F}$ in parallel to 100 nF .

Figure 7-1. EV10AQ190A Power supplies Decoupling and grounding Scheme

Note: $\quad V_{C C D}$ and $V_{C C O}$ planes should be separated but the two power supplies can be reunited by a strap on the board.

It is recommended to decouple all power supplies to ground as close as possible to the device balls with 220 pF in parallel to 33 nF capacitors. The minimum number of decoupling pairs of capacitors can be calculated as the minimum number of groups of neighboring pins. Seventeen capacitors of 220 pF and 8 capacitors of 33 nF for V_{Cc}; 8 capacitors of 220 pF and 4 capacitors of 33 nF for $\mathrm{V}_{\mathrm{Cco}}$ and 220 pF capacitor with 33 nF capacitor for $\mathrm{V}_{\mathrm{CCD}}$.

For full details please refer to EV10AQ190 Application Note.

Figure 7-2. EV10AQ190A Power Supplies Bypassing Scheme

Each power supply has to be bypassed as close as possible to its source or access by 100 nF in parallel to $2.2 \mu \mathrm{~F}$ capacitor.

7.2 Differential Analog Inputs ($\mathrm{V}_{\mathrm{IN}} / \mathrm{V}_{\text {INN }}$)

The analog input can be either DC or AC coupled as described in Figures 7-3 and Figure 7-4.
Figure 7-3. Differential Analog Input Implementation (AC coupled)

Notes: 1. $\mathrm{X}=\mathrm{A}, \mathrm{B}, \mathrm{C}$ or D .
2. The 50Ω terminations are on chip.
3. CMIRefAB/CD $=1.6 \mathrm{~V}$.

Figure 7-4. Differential Analog Input Implementation (DC coupled)

Notes: 1. $\mathrm{X}=\mathrm{A}, \mathrm{B}, \mathrm{C}$ or D
2. The 50Ω terminations are implemented on-chip and can be fine tuned (TRIMMER register at address 0×13).
3. C MIRefAB/CD $=1.6 \mathrm{~V}$. The Common mode is output on signal CMIRefAB for A and B channels and CMIRefCD for C and D channels.

If some analog inputs are not used, they can be left unconnected (open). Example: ADC in one channel mode with analog input signal on A channel, then analog inputs B, C and D can be left unconnected.

7.3 Clock Inputs (CLK/CLKN)

It is recommended to enter the clock input signal differential mode. Since the clock input common mode is around 1.8 V , we recommend to AC couple the input clock as described in Figure 7-5.

Figure 7-5. Differential Clock Input Implementation (AC coupled)

- Differential mode is the recommended input scheme.
- Single ended input is not recommended due to performance limitations.

7.4 Digital Outputs

The digital outputs are LVDS compatible. They have to be 100Ω differentially terminated.

Figure 7-6. Differential Digital Outputs Terminations (100 LVDS)

Note: If not used, leave the pins of the differential pair open.

7.5 Reset Buffer (SYNCP, SYNCN)

The SYNCP, SYNCN signal has LVDS electrical characteristics. It is active high and should last at least two clock cycles to work properly

Figure 7-7. Reset Buffer (SYNCP, SYNCN)

Note: If not used, leave the pins of the differential pair open.

7.6 Calibration Procedure

The Quad ADC EV10AQ190A is made up of four 10-bit ADC cores which can be considered independently (four-channel mode) or grouped by two cores (2-channel mode with the ADCs interleaved two by two or one-channel mode where all four ADCs are all interleaved).

The Time-interleaved ADC System can exhibit imperfect artifacts (distortion) in the frequency domain if the individual ADC core characteristics are not well matched. Offset, Gain and Phase (delay) are of primary concern.

When interleaved the four internal ADCs of EV10AQ190A need to be calibrated with Offset, Gain and Phase matching. Therefore each ADC must have as close as possible the same Offset, Gain and Phase. Applications Note "Calibration Methodology for EV10AQ190" describes this procedure in detail.

8. Package Information

Figure 8-1. Package Outline

Figure 8-2. EBGA380 Land Pattern Recommendations

bottom view

LAND PATTERN RECOMMENDATIONS

A	B	C	D	E	e	b
31.00	31.00	0.85	29.21	29.21	1.27	0.70

8.1 Thermal Characteristics

Assumptions:

- Still air
- Pure conduction
- No radiation

8.1.1 Thermal Characteristics

- Rth Junction -bottom of Balls $=6.68^{\circ} \mathrm{C} / \mathrm{W}$
- Rth Junction - board $=7.38^{\circ} \mathrm{C} / \mathrm{W}$
- Rth Junction -top of case $=4.3^{\circ} \mathrm{C} / \mathrm{W}$
- Rth Junction - top of case with $50 \mu \mathrm{~m}$ thermal grease $=4.9^{\circ} \mathrm{C} / \mathrm{W}$
-Rth Junction - ambient (JEDEC standard, $49 \times 49 \mathrm{~mm}^{2}$ board size) $=16.3^{\circ} \mathrm{C} / \mathrm{W}$
- Rth Junction - ambient ($180 \times 170 \mathrm{~mm}^{2}$ evaluation board size) $=12.8^{\circ} \mathrm{C} / \mathrm{W}$

8.2 Thermal Management Recommendations

In still air and $25^{\circ} \mathrm{C}$ ambient temperature conditions, the maximum temperature for the device soldered on the evaluation board is $84.5^{\circ} \mathrm{C}$. For higher temperature extra cooling is necessary.

In the case of the need of an external thermal management, it is recommended to have an external heatsink on top of the EBGA380 with a thermal resistance of $4^{\circ} \mathrm{C} / \mathrm{W}$ maximum.

8.3 Moisture Characteristics

This device is sensitive to the moisture (MSL3 according to JEDEC standard).
Shelf life in sealed bag: 12 months at $<40^{\circ} \mathrm{C}$ and $<90 \%$ relative humidity (RH).
After this bag is opened, devices that will be subject to infrared reflow, vapor-phase reflow, or equivalent processing (peak package body temperature $220^{\circ} \mathrm{C}$) must be:

- mounted within 168 hours at factory conditions of $\leq 30^{\circ} \mathrm{C} / 60 \%$ RH, or
- stored at $\leq 20 \% \mathrm{RH}$

Devices require baking, before mounting, if Humidity Indicator is $>20 \%$ when read at $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$.
If baking is required, devices may be baked for:

- 192 hours at $40^{\circ} \mathrm{C}+5^{\circ} \mathrm{C} /-0 \mathrm{C}$ and $<5 \%$ RH for low temperature device containers, or
-24 hours at $125^{\circ} \mathrm{C} 5^{\circ} \mathrm{C}$ for high-temperature device containers.

9. Ordering Information

Table 9-1. Ordering Information

Part Number	Package	Temperature Range	Screening Level	Comments
EVX10AQ190ATPY	EBGA380 RoHS	Ambient	Prototype	
EV10AQ190ATPY-EB	EBGA380 RoHS	Ambient	Prototype	Evaluation board
EV10AQ190A-DK	EBGA	Ambient	Prototype	Demonstration kit
EV10AQ190ACTPY	EBGA380 RoHS	Commercial $0^{\circ} \mathrm{C}<\mathrm{T}_{C} ;$ $\mathrm{T}_{J}<90^{\circ} \mathrm{C}$	Standard	Contact e2v Sales Office for availability
EV10AQ190AVTPY	EBGA380 RoHS	Industrial $-40^{\circ} \mathrm{C}<\mathrm{T}_{C} ;$ $\mathrm{T}_{J}<110^{\circ} \mathrm{C}$	Standard	Contact e2v Sales Office for availability
EV10AQ190AVTP	EBGA380	Industrial $-40^{\circ} \mathrm{C}<\mathrm{T}_{C} ;$ $\mathrm{T}_{J}<110^{\circ} \mathrm{C}$	Standard	Contact e2v Sales Office for availability

EV10AQ190A

Table of Contents

Main Features 1
Performance 1
Applications 2
1 Block Diagram 2
2 Description 3
3 Specifications 7
3.1 Absolute Maximum Ratings 7
3.2 Recommended Conditions of Use 8
3.3 Electrical Characteristics for supplies, Inputs and Outputs 8
3.4 Converter Characteristics 11
3.5 Transient and Switching Characteristics 14
3.6 Explanation of Test Levels 16
3.7 Timing Diagrams 16
3.8 Digital Output Coding 19
3.9 Definition of Terms 19
4 Characterization Results 22
5 Pin Description 26
5.1 Pinout View (Bottom View) 26
5.2 Pinout Table 27
6 Functional Description 35
6.1 Overview 35
6.2 ADC Synchronization Signal (SYNCP, SYNCN) 36
6.3 Digital Scan Mode (SCAN[2:0]) 40
6.4 Die Junction Temperature Monitoring Diode 40
6.5 Res50 and Res62 41
6.6 Quad ADC Digital Interface (SPI) 42
7 Application Information 61
7.1 Bypassing, Decoupling and Grounding 61
7.2 Differential Analog Inputs (VIN/VINN) 62
7.3 Clock Inputs (CLK/CLKN) 63
7.4 Digital Outputs 63
7.5 Reset Buffer (SYNCP, SYNCN) 64
7.6 Calibration Procedure 64
8 Package Information 65
8.1 Thermal Characteristics 66
8.2 Thermal Management Recommendations 67
8.3 Moisture Characteristics 67
9 Ordering Information 67
Table of Contents i

How to reach us

Home page: www.e2v.com

Sales offices:

Europe Regional sales office

e2v Itd
106 Waterhouse Lane
Chelmsford Essex CM1 2QU
England
Tel: +44 (0)1245 493493
Fax: +44 (0)1245 492492
mailto: enquiries@e2v.com

e2v sas

16 Burospace
F-91572 Bièvres Cedex
France
Tel: +33 (0) 160195500
Fax: +33 (0) 160195529
mailto: enquiries-fr@e2v.com

e2v Aerospace and defense inc

765 Sycamore Drive

Milpitas

California 95035
USA
Tel: +33 (0) 14087370992
Fax: +33 (0) 14087368708
mailto: e2v-us.com
Americas
e2v inc
520 White Plains Road
Suite 450 Tarrytown, NY 10591
USA
Tel: +1 (914) 5926050 or 1-800-342-5338,
Fax: +1 (914)592-5148
mailto: enquiries-na@e2v.com

Asia Pacific
e2v Itd
11/F.,
Onfem Tower,
29 Wyndham Street,
Central, Hong Kong
Tel: +852 3679364 8/9
Fax: +852 35831084
mailto: enquiries-ap@e2v.com

Product Contact:
e2v
Avenue de Rochepleine
BP 123-38521 Saint-Egrève Cedex
France
Tel: +33 (0)4 76583000

Hotline:

mailto: hotline-bdc @e2v.com

IMPORTANT NOTICE

[^0]EV10AQ190A

[^0]: Whilst e2v has taken care to ensure the accuracy of the information contained herein it accepts no liability for the consequences any use thereof and also reserves the right to make corrections, modifications, enhancements, improvements, and other changes of its products without prior notice. Users of e2v products should obtain the latest relevant information before placing orders and should verify that such information is current and complete. e2v accepts no liability beyond that set out in its standard conditions of sale in respect of infringement of third party patents arising from the use of data converters or other devices in accordance with infor mation contained herein.

