

Sample &

Buy

MAX3243

SLLS3500 - APRIL 1999 - REVISED JANUARY 2015

Support &

Community

20

MAX3243 3-V to 5.5-V Multichannel RS-232 Line Driver/Receiver With ±15-kV ESD (HBM) Protection

Technical

Documents

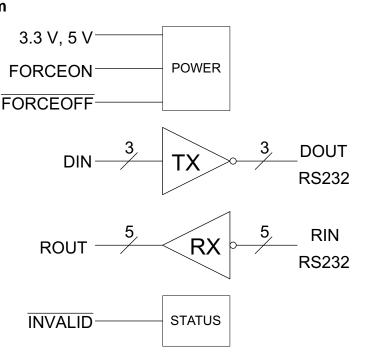
1 Features

- Operates With 3-V to 5.5-V V_{CC} Supply
- Single-Chip and Single-Supply Interface for IBM[™] PC/AT[™] Serial Port
- RS-232 Bus-Pin ESD Protection of ±15 kV Using Human-Body Model (HBM)
- Meets or Exceeds the Requirements of TIA/EIA-232-F and ITU V.28 Standards
- Three Drivers and Five Receivers
- Operates Up To 250 kbit/s
- Low Active Current: 300 µA Typical
- Low Standby Current: 1 µA Typical
- External Capacitors: 4 × 0.1 µF
- Accepts 5-V Logic Input With 3.3-V Supply
- Always-Active Noninverting Receiver Output (ROUT2B)
- Operating Temperature
 - MAX3243C: 0°C to 70°C
 - MAX3243I: -40°C to 85°C
- Serial-Mouse Driveability
- Auto-Powerdown Feature to Disable Driver Outputs When No Valid RS-232 Signal Is Sensed
- 4 Simplified Diagram

2 Applications

Tools &

Software


- Battery-Powered Systems
- Tablets
- Notebooks
- Laptops
- Hand-Held Equipment

3 Description

The MAX3243 device consists of three line drivers, five line receivers which is ideal for DE-9 DTE interface. ±15-kV ESD (HBM) protection pin to pin (serial- port connection pins, including GND). Flexible power features saves power automatically. Special outputs ROUT2B and INVALID are always enabled to allow checking for ring indicator and valid RS232 input.

Device Information ⁽¹⁾						
PART NUMBER	BODY SIZE					
	SSOP (28)	10.29 mm × 5.30 mm				
MAX3243	SOIC (28)	17.90 mm × 7.50 mm				
	TSSOP (28)	9.70 mm × 4.40 mm				

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Table of Contents

1	Feat	ures 1
2	App	lications 1
3	Desc	cription 1
4	Sim	blified Diagram 1
5	Revi	sion History 2
6	Pin (Configuration and Functions
7	Spee	cifications 4
	7.1	Absolute Maximum Ratings 4
	7.2	ESD Ratings 4
	7.3	Recommended Operating Conditions 4
	7.4	Thermal Information 4
	7.5	Electrical Characteristics — Auto Power Down 5
	7.6	Electrical Characteristics — Driver 5
	7.7	Electrical Characteristics — Receiver
	7.8	Switching Characteristics — Auto Power Down 6
	7.9	Switching Characteristics — Driver 6
	7.10	Switching Characteristics — Receiver 6
	7.11	Typical Characteristics 7

9	Deta	iled Description	11
	9.1	Overview	11
	9.2	Functional Block Diagram	11
	9.3	Feature Description	12
	9.4	Device Functional Modes	13
10	Арр	lication and Implementation	14
	10.1	Application Information	14
	10.2	Typical Application	14
11	Pow	ver Supply Recommendations	16
12	Layo	out	16
	12.1	Layout Guidelines	16
	12.2	Layout Example	17
13	Devi	ice and Documentation Support	18
	13.1	Trademarks	18
	13.2	Electrostatic Discharge Caution	18
	13.3	Glossary	18
14	Mec	hanical, Packaging, and Orderable	
	Infor	mation	18

8 Parameter Measurement Information 8

Revision History 5

Changes from Revision N (May 2009) to Revision O

•	Added Applications, Device Information table, Pin Functions table, ESD Ratings table, Thermal Information table,	
	Typical Characteristics, Feature Description section, Device Functional Modes, Application and Implementation	
	section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and	
	Mechanical, Packaging, and Orderable Information section.	. 1
•	Deleted Ordering Information table.	1

www.ti.com

Page

6 Pin Configuration and Functions

DB, DW, OR PW PACKAGE (TOP VIEW)								
		_ • •)						
C2+[$ _1 \cup$	28	C1+					
C2-[2	27] V+					
V-[3	26	Vcc					
RIN1	4	25] GND					
RIN2	5	24]C1-					
RIN3	6	23	FORCEON					
RIN4	7	22] FORCEOFF					
RIN5	8	21	INVALID					
DOUT1	9	20	ROUT2B					
DOUT2	10	19	ROUT1					
DOUT3	11	18	ROUT2					
DIN3	12	17] ROUT3					
DIN2	13	16	ROUT4					
DIN1	14	15	ROUT5					
			I					

Pin Functions

PIN		ТҮРЕ	DESCRIPTION		
NAME	NO.	ITPE	DESCRIPTION		
C2+	1	_	Positive lead of C2 capacitor		
C2-	2	_	Negative lead of C2 capacitor		
V–	3	0	Negative charge pump output for storage capacitor only		
RIN1:RIN5	4, 5, 6, 7, 8	I	RS232 line data input (from remote RS232 system)		
DOUT1:DOUT3	9, 10, 11	0	RS232 line data output (to remote RS232 system)		
DIN3:DIN1	12, 13, 14	I	Logic data input (from UART)		
ROUT5:ROUT1	15, 16, 17, 18, 19	0	Logic data output (to UART)		
ROUT2B	20	0	Always Active non-inverting output for RIN2 (normally used for ring indicator)		
INVALID	21	0	Active low output when all RIN are unpowered		
FORCEOFF	22	I	Low input forces DOUT1-5, ROUT1-5 high Z per <i>Device Functional</i> Modes		
FORCEON	23	I	High forces drivers on. Low is automatic mode per <i>Device Functional</i> <i>Modes</i>		
C1-	24	_	Negative lead on C1 capacitor		
GND	25	_	Ground		
V _{CC}	26	—	Supply Voltage, Connect to 3V to 5.5V power supply		
V+	27	0	Positive charge pump output for storage capacitor only		
C1+	28	—	Positive lead of C1 capacitor		

TEXAS INSTRUMENTS

www.ti.com

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) ⁽¹⁾

			MIN	MAX	UNIT
V _{CC}	Supply voltage range ⁽²⁾		-0.3	6	V
V+	Positive output supply voltage range ⁽²⁾		-0.3	7	V
V–	egative output supply voltage range ⁽²⁾		0.3	-7	V
V+ - V-	Supply voltage difference ⁽²⁾			13	V
V	Input voltage range	Driver, FORCEOFF, FORCEON	-0.3	6	V
VI		Receiver	-25	25	v
V		Driver	-13.2	13.2	V
Vo	Output voltage range	Receiver, INVALID	-0.3	V _{CC} + 0.3	v
TJ	Operating virtual junction temperature			150	°C
T _{stg}	Storage temperature range		-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltages are with respect to network GND.

7.2 ESD Ratings

			MAX	UNIT
	Electrostatic discharge RIN , DOUT, and GND pins ⁽¹⁾ Human body model (HBM), per ANSI/ESDA/JEDE All other pins ⁽¹⁾	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 RIN , DOUT, and GND pins $^{\rm (1)}$	15000	
V _(ESD)		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 All other pins ⁽¹⁾	3000	V
		Charged device model (CDM), per JEDEC specification JESD22-C101, all $pins^{(2)}$	1000	

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

⁽¹⁾(See Figure 8)

				MIN	NOM	MAX	UNIT
v	/ _{CC} Supply voltage		V _{CC} = 3.3 V	3	3.3	3.6	V
VCC			$V_{CC} = 5 V$	4.5	5	5.5	v
		DIN, FORCEOFF,	$V_{CC} = 3.3 V$	2		5.5	V
VIH	Driver and control high-level input voltage	FORCEON	$V_{CC} = 5 V$	2.4		5.5	v
V_{IL}	Driver and control low-level input voltage	DIN, FORCEOFF, FORCEC	N	0		0.8	V
V_{I}	Driver and control input voltage	DIN, FORCEOFF, FORCEC	DIN, FORCEOFF, FORCEON			5.5	V
VI	V _I Receiver input voltage			-25		25	V
-				0		70	~
T _A	Operating free-air temperature		MAX3243I	-40		85	°C

(1) Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V.

7.4 Thermal Information

		MAX3243			
THERMAL METRIC ⁽¹⁾	DB	DB DW PW		UNIT	
	16 PINS	16 PINS	16 PINS		
$R_{\theta JA}$ Junction-to-ambient thermal resistance	62	46	62	°C/W	

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report (SPRA953).

7.5 Electrical Characteristics — Auto Power Down

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)⁽¹⁾ (see Figure 8)

	PARAMETER	TEST CONDITIONS	MIN TYP ⁽²) MAX	UNIT
	Supply current Auto-powerdown disabled	No load, $\overline{\text{FORCEOFF}}$ and $\overline{\text{FORCEON}}$ at V _{CC} . T _A = 25°C	0.3	3 1	mA
I _{CC}	Supply current Powered off	No load, $\overline{\text{FORCEOFF}}$ at GND. $T_A = 25^{\circ}\text{C}$		1 10	
	Supply current Auto-powerdown enabled	No load, $\overline{FORCEOFF}$ at V_CC, FORCEON at GND, All RIN are open or grounded, All DIN are grounded. T_A = 25°C		1 10	μA
I _I	Input leakage current of FORCEOFF, FORCEON	$V_1 = V_{CC} \text{ or } V_1 \text{ at GND}$	±0.0'	1 ±1	μA
V _{IT+}	Receiver input threshold for INVALID high-level output voltage	FORCEON = GND, FORCEOFF = V _{CC}		2.7	V
V _{IT-}	Receiver input threshold for INVALID high-level output voltage	$\frac{\text{FORCEON}}{\text{FORCEOFF}} = \text{V}_{\text{CC}}$	-2.7		V
V _T	Re <u>ceiver inp</u> ut threshold for INVALID low-level output voltage	$\frac{\text{FORCEON}}{\text{FORCEOFF}} = \text{GND},$	-0.3	0.3	V
V _{OH}	INVALID high-level output voltage	$I_{OH} = -1 \text{ mA}$, FORCEON = GND, FORCEOFF = V _{CC}	V _{CC} – 0.6		V
V _{OL}	INVALID low-level output voltage	$I_{OL} = 1.6 \text{ mA}, \text{ FORCEON} = \text{GND},$ FORCEOFF = V _{CC}		0.4	V

(1)

Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V. Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating* (2) Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.6 Electrical Characteristics — Driver

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)⁽¹⁾ (see Figure 8)

	PARAMETER	TES	ST CONDITIONS		MIN	TYP ⁽²⁾	MAX	UNIT
V _{OH}	High-level output voltage	All DOUT at $R_L = 3 k\Omega$ to G	GND		5	5.4		V
V _{OL}	Low-level output voltage	All DOUT at $R_L = 3 k\Omega$ to G	GND		-5	-5.4		V
Vo	Output voltage (mouse driveability)	DIN1 = DIN2 = GND, DIN3 DOUT1 = DOUT2 = 2.5 m/	DIN1 = DIN2 = GND, DIN3 = V_{CC} , 3-k Ω to GND at DOUT3, DOUT1 = DOUT2 = 2.5 mA					V
I _{IH}	High-level input current	$V_I = V_{CC}$				±0.01	±1	μA
IIL	Low-level input current	V _I at GND				±0.01	±1	μA
V _{hys}	Input hysteresis						±1	V
,	Short-circuit output current ⁽³⁾	V _{CC} = 3.6 V,	$V_0 = 0 V$			±35	±60	س ۸
los	Short-circuit output current	V _{CC} = 5.5 V,	$V_0 = 0 V$			±35	±60	mA
r _o	Output resistance	V_{CC} , V+, and V- = 0 V,	$V_0 = \pm 2 V$		300	10M		Ω
		FORCEOFF = GND,	$V_0 = \pm 12 V$,	V_{CC} = 3 to 3.6 V			±25	
I _{off}	Output leakage current	FURGEUFF = GND,	$V_0 = \pm 10 V$,	V_{CC} = 4.5 to 5.5 V			±25	μA

(1)

(2)

Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V. All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C. Short-circuit durations should be controlled to prevent exceeding the device absolute power dissipation ratings, and not more than one (3) output should be shorted at a time.

7.7 Electrical Characteristics — Receiver

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) ⁽¹⁾ (see Figure 8)	over recommended ranges of su	poly voltage and operating free-air te	emperature (unless otherwise note	ed) ⁽¹⁾ (see Figure 8)
---	-------------------------------	--	-----------------------------------	-----------------------------------

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽²⁾	MAX	UNIT
V _{OH}	High-level output voltage	$I_{OH} = -1 \text{ mA}$	$V_{CC} - 0.6$	$V_{CC} - 0.1$		V
V _{OL}	Low-level output voltage	I _{OH} = 1.6 mA			0.4	V
V	Positive-going input threshold voltage	V _{CC} = 3.3 V		1.6	2.4	V
V _{IT+}	Positive-going input the shold voltage	$V_{CC} = 5 V$		1.9	2.4	v
V	Negative-going input threshold voltage	$V_{CC} = 3.3 V$	0.6	1.1		V
V _{IT}	Negative-going input theshold voltage	$V_{CC} = 5 V$	0.8	1.4		v
V _{hys}	Input hysteresis (V _{IT+} – V _{IT–})			0.5		V
I_{off}	Output leakage current (except ROUT2B)	$\overline{FORCEOFF} = 0 \text{ V}$		±0.05	±10	μA
r _l	Input resistance	$V_{I} = \pm 3 \text{ V or } \pm 25 \text{ V}$	3	5	7	kΩ

(1) Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V. (2) All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C.

7.8 Switching Characteristics — Auto Power Down

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 7)

	PARAMETER	TEST CONDITIONS	TYP ⁽¹⁾	UNIT
t _{valid}	Propagation delay time, low- to high-level output	$V_{CC} = 5 V$	1	μs
t _{invalid}	Propagation delay time, high- to low-level output	V _{CC} = 5 V	30	μs
t _{en}	Supply enable time	V _{CC} = 5 V	100	μs

(1) All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C.

7.9 Switching Characteristics — Driver

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)⁽¹⁾ (see Figure 8) MAX3243C, MAX3243I

	PARAMETER	TEST C	ONDITIONS	MIN	TYP ⁽²⁾ MAX	UNIT
	Maximum data rate	$R_L = 3 k\Omega$ One DOUT switching,	C _L = 1000 pF See Figure 3	150	250	kbit/s
t _{sk(p)}	Pulse skew ⁽³⁾	$R_L = 3 k\Omega$ to 7 k Ω	C _L = 150 pF to 2500 pF See Figure 5		100	ns
	Slew rate, transition region	$V_{CC} = 3.3 V,$	C _L = 150 pF to 1000 pF	6	30	Mue
SR(tr)	(see Figure 3)	$R_L = 3 k\Omega$ to 7 k Ω	$C_{L} = 150 \text{ pF} \text{ to } 2500 \text{ pF}$	4	30	V/µs

Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V + 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V. (1)

(2)

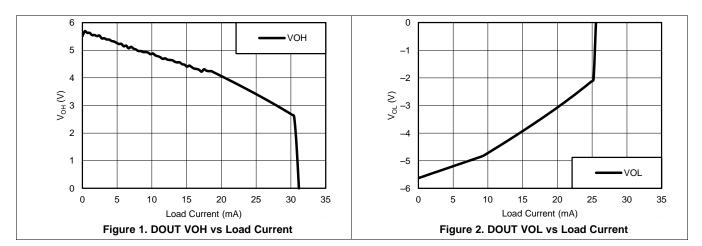
All typical values are at $V_{CC} = 3.3$ V or $V_{CC} = 5$ V, and $T_A = 25^{\circ}C$. Pulse skew is defined as $|t_{PLH} - t_{PHL}|$ of each channel of the same device. (3)

7.10 Switching Characteristics — Receiver

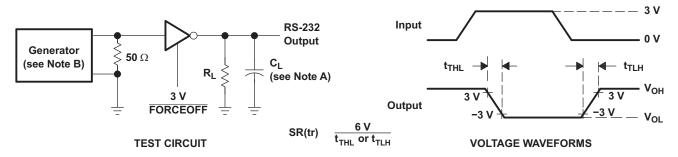
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)⁽¹⁾

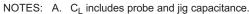
	PARAMETER	TEST CONDITIONS	TYP ⁽²⁾	UNIT
t _{PLH}	Propagation delay time, low- to high-level output	C _L = 150 pF,	150	ns
t _{PHL}	Propagation delay time, high- to low-level output	See Figure 5	150	ns
t _{en}	Output enable time	$C_{L} = 150 \text{ pF}, R_{L} = 3 \text{ k}\Omega,$	200	ns
t _{dis}	Output disable time	See Figure 6	200	ns
t _{sk(p)}	Pulse skew ⁽³⁾	See Figure 5	50	ns

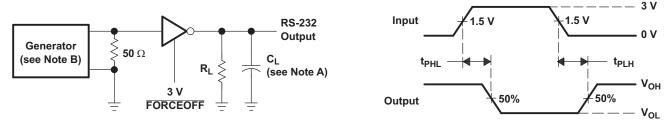
Test conditions are C1–C4 = 0.1 µF at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 µF, C2–C4 = 0.33 µF at V_{CC} = 5 V ± 0.5 V. (1)


All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C. (2)

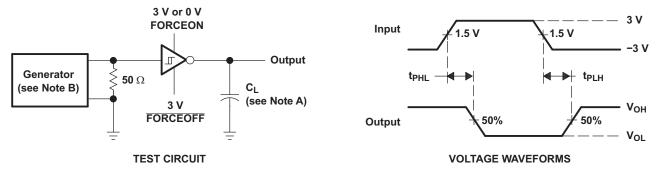
Pulse skew is defined as $\left|t_{PLH} - t_{PHL}\right|$ of each channel of the same device. (3)


7.11 Typical Characteristics




8 Parameter Measurement Information

B. The pulse generator has the following characteristics: PRR = 250 kbit/s (MAX3243C/I) and 1 Mbit/s (MAX3243FC/I), $Z_{O} = 50 \Omega$, 50% duty cycle, $t_{f} \le 10$ ns.



TEST CIRCUIT

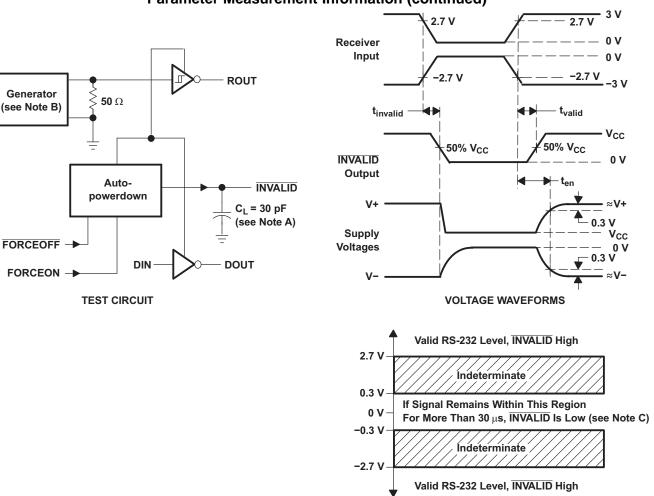
VOLTAGE WAVEFORMS

- NOTES: A. CL includes probe and jig capacitance.
 - B. The pulse generator has the following characteristics: PRR = 250 kbit/s (MAX3243C/I) and 1 Mbit/s (MAX3243FC/I), $Z_0 = 50 \Omega$, 50% duty cycle, $t_r \le 10$ ns, $t_f \le 10$ ns.

Figure 4. Driver Pulse Skew

NOTES: A. C_L includes probe and jig capacitance. B. The pulse generator has the following characteristics: $Z_0 = 50 \Omega$, 50% duty cycle, $t_r \le 10 \text{ ns}$, $t_f \le 10 \text{ ns}$.

Figure 5. Receiver Propagation Delay Times



- 3 V Input 1.5 V 1.5 V Vcc 🔿 O GND 3 V or 0 V --0 V **S1** C FORCEON t_{PZH} t_{PHZ} ξ RL (S1 at GND) (S1 at GND) - V_{OH} 3 V or 0 V Output Ш Output 50% C_L 0.3 V (see Note A) FORCEOFF t_{PLZ} t_{PZL} (S1 at V_{CC}) (S1 at V_{CC}) Generator Ş **50** Ω (see Note B) 0.3 V Output 50% - V_{OL} **TEST CIRCUIT VOLTAGE WAVEFORMS**

Parameter Measurement Information (continued)

- NOTES: A. C_L includes probe and jig capacitance.
 - B. The pulse generator has the following characteristics: $Z_0 = 50 \Omega$, 50% duty cycle, $t_r \le 10$ ns. $t_f \le 10$ ns.
 - C. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
 - D. t_{PZL} and t_{PZH} are the same as t_{en}.

Figure 6. Receiver Enable and Disable Times

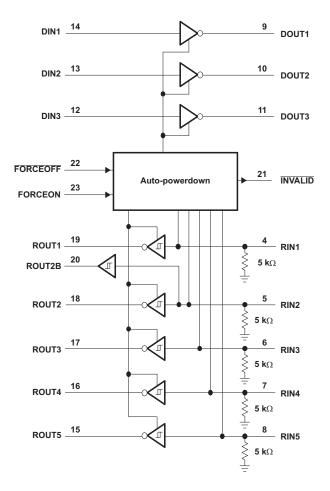
Parameter Measurement Information (continued)

NOTES: A. C_L includes probe and jig capacitance.

- B. The pulse generator has the following characteristics: PRR = 5 kbit/s, $Z_0 = 50 \Omega$, 50% duty cycle, $t_r \le 10$ ns, $t_f \le 10$ ns.
- C. Auto-powerdown disables drivers and reduces supply current to 1 µA.

Figure 7. INVALID Propagation Delay Times and Supply Enabling Time

www.ti.com



9 Detailed Description

9.1 Overview

The MAX3243 device consists of three line drivers, five line receivers, and a dual charge-pump circuit with ±15kV ESD (HBM) protection pin to pin (serial- port connection pins, including GND). The device meets the requirements of TIA/EIA-232-F and provides the electrical interface between an asynchronous communication controller and the serial-port connector. This combination of drivers and receivers matches that needed for the typical serial port used in an IBM PC/AT, or compatible. The charge pump and four small external capacitors allow operation from a single 3-V to 5.5-V supply. In addition, the device includes an always-active noninverting output (ROUT2B), which allows applications using the ring indicator to transmit data while the device is powered down. Flexible control options for power management are available, when the serial port is inactive. The autopower-down feature functions when FORCEON is low and FORCEOFF is high. During this mode of operation, if the device does not sense a valid RS-232 signal, the driver outputs are disabled. If FORCEOFF is set low, both drivers and receivers (except ROUT2B) are shut off, and the supply current is reduced to 1 µA. Disconnecting the serial port or turning off the peripheral drivers causes the auto-powerdown condition to occur. Autopowerdown can be disabled when FORCEON and FORCEOFF are high and should be done when driving a serial mouse. With auto-powerdown enabled, the device is activated automatically when a valid signal is applied to any receiver input. The INVALID output is used to notify the user if an RS-232 signal is present at any receiver input. INVALID is high (valid data) if any receiver input voltage is greater than 2.7 V or less than -2.7 V or has been between -0.3 V and 0.3 V for less than 30 µs. INVALID is low (invalid data) if all receiver input voltages are between -0.3 V and 0.3 V for more than 30 µs.

9.2 Functional Block Diagram

9.3 Feature Description

9.3.1 Auto-Power-Down

Auto-Power-Down can be used to automatically save power when the receivers are unconnected or connected to a powered down remote RS232 port. FORCEON being high will override Auto power down and the drivers will be active. FORCEOFF being low will override FORCEON and will power down all outputs except for ROUT2B and INVALID.

9.3.2 Charge Pump

The charge pump increases, inverts, and regulates voltage at V+ and V- pins and requires four external capacitors.

9.3.3 RS232 Driver

Three drivers interface standard logic level to RS232 levels. All DIN inputs must be valid high or low.

9.3.4 RS232 Receiver

Five receivers interface RS232 levels to standard logic levels. An open input will result in a high output on ROUT. Each RIN input includes an internal standard RS232 load.

9.3.5 ROUT2B Receiver

ROUT2B is an always-active noninverting output of RIN2 input, which allows applications using the ring indicator to transmit data while the device is powered down.

9.3.6 Invalid Input Detection

The INVALID output goes active low when all RIN inputs are unpowered. The INVALID output goes inactive high when any RIN input is connected to an active RS232 voltage level.

9.4 Device Functional Modes

				-	
	INP	UTS		OUTPUT	
DIN	FORCEON FORCEOFF VALID RIN RS-232 LEVEL			DOUT	DRIVER STATUS
Х	Х	L	Х	Z	Powered off
L	Н	н	Х	Н	Normal operation with
н	Н	н	Х	L	auto-powerdown disabled
L	L	Н	YES	Н	Normal operation with
н	L	н	YES	L	auto-powerdown enabled
х	L	Н	NO	z	Power off by auto-powerdown feature

Table 1. Each Driver⁽¹⁾

(1) H = high level, L = low level, X = irrelevant, Z = high impedance, YES = any RIN valid, NO = all RIN invalid

Table 2. Each Receiver⁽¹⁾

	OUTPUTS							
RECEIVER STATUS	ROUT	FORCEOFF	RIN FORCEON FORC					
Powered off	Z	L	Х	Х				
	Н	Н	Х	L				
Normal operation	L	Н	Х	Н				
	Н	Н	Х	Open				

(1) H = high level, L = low level, X = irrelevant, Z = high impedance (off), Open = input disconnected or connected driver off

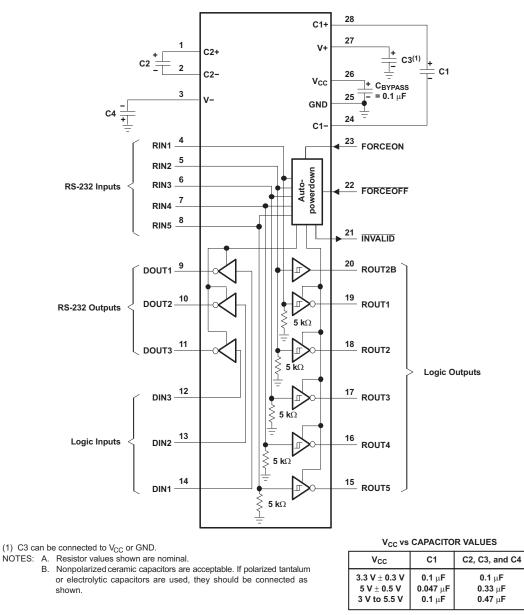
Table 3. INVALID and ROUT2B Outputs⁽¹⁾

	INP	UTS		OUTI	PUTS	
VALID RIN RS-232 LEVEL	RIN2	FORCEON	FORCEOFF	INVALID	ROUT2B	OUTPUT STATUS
YES	L	Х	Х	н	L	
YES	Н	Х	Х	н	Н	Always Active
YES	OPEN	Х	Х	Н	L	
NO	OPEN	Х	Х	L	L	Always Active

 H = high level, L = low level, X = irrelevant, Z = high impedance (off), OPEN = input disconnected or connected driver off, YES = any RIN valid, NO = all RIN invalid

10 Application and Implementation

NOTE


Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

10.1 Application Information

It is recommended to add capacitors as shown in Figure 8.

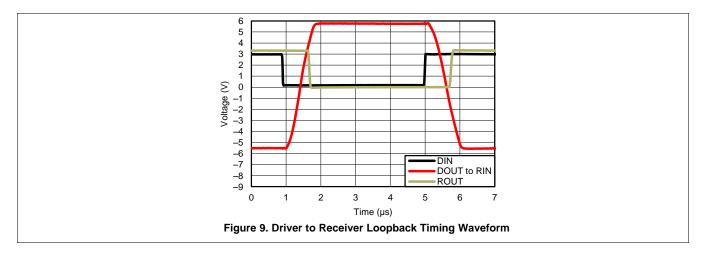
10.2 Typical Application

ROUT and DIN connect to UART or general purpose logic lines. RIN and DOUT lines connect to a RS232 connector or cable.

Figure 8. Typical Operating Circuit and Capacitor Values

Typical Application (continued)

10.2.1 Design Requirements


- V_{CC} minimum is 3 V and maximum is 5.5V.
- Maximum recommended bit rate is 250 kbit/s.

10.2.2 Detailed Design Procedure

- All DIN, FORCEOFF and FORCEON inputs must be connected to valid low or high logic levels.
- Select capacitor values based on V_{CC} level for best performance.

10.2.3 Application Curves

 V_{CC} = 3.3 V

11 Power Supply Recommendations

V_{CC} should be between 3 V and 5.5 V. Charge pump capacitors should be chosen using table in Figure 8.

12 Layout

12.1 Layout Guidelines

Keep the external capacitor traces short. This is more important on C1 and C2 nodes that have the fastest rise and fall times.

In the *Layout Example* diagram, only critical layout sections are shown. Input and output traces will vary in shape and size depending on the customer application. FORCEON and /FORCEOFF should be pulled up to VCC or GND via a pullup resistor, depending on which configuration the user desires upon power-up.

12.2 Layout Example

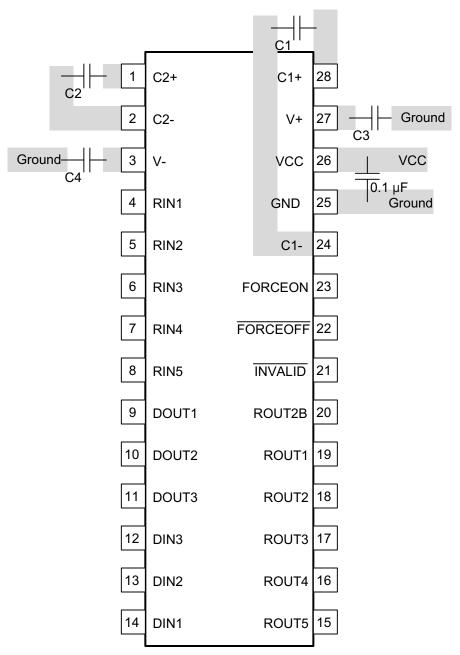


Figure 10. Layout Diagram

13 Device and Documentation Support

13.1 Trademarks

IBM, PC/AT are trademarks of IBM. All other trademarks are the property of their respective owners.

13.2 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

13.3 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

14 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

www.ti.com

24-Aug-2018

PACKAGING INFORMATION

Orderable Device	Status	Package Type	•	Pins	•	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
MAX3243CDB	ACTIVE	SSOP	DB	28	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	MAX3243C	Samples
MAX3243CDBG4	ACTIVE	SSOP	DB	28	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	MAX3243C	Samples
MAX3243CDBR	ACTIVE	SSOP	DB	28	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	MAX3243C	Samples
MAX3243CDBRE4	ACTIVE	SSOP	DB	28	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	MAX3243C	Samples
MAX3243CDBRG4	ACTIVE	SSOP	DB	28	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	MAX3243C	Samples
MAX3243CDW	ACTIVE	SOIC	DW	28	20	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	MAX3243C	Samples
MAX3243CDWE4	ACTIVE	SOIC	DW	28	20	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	MAX3243C	Samples
MAX3243CDWR	ACTIVE	SOIC	DW	28	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	MAX3243C	Samples
MAX3243CDWRG4	ACTIVE	SOIC	DW	28	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	MAX3243C	Samples
MAX3243CPW	ACTIVE	TSSOP	PW	28	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	MA3243C	Samples
MAX3243CPWE4	ACTIVE	TSSOP	PW	28	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	MA3243C	Samples
MAX3243CPWR	ACTIVE	TSSOP	PW	28	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	MA3243C	Samples
MAX3243CPWRG4	ACTIVE	TSSOP	PW	28	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	MA3243C	Samples
MAX3243IDB	ACTIVE	SSOP	DB	28	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	MAX3243I	Samples
MAX3243IDBG4	ACTIVE	SSOP	DB	28	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	MAX3243I	Samples
MAX3243IDBR	ACTIVE	SSOP	DB	28	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	MAX3243I	Samples
MAX3243IDW	ACTIVE	SOIC	DW	28	20	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	MAX3243I	Samples

24-Aug-2018

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
MAX3243IDWR	ACTIVE	SOIC	DW	28	1000	Green (RoHS & no Sb/Br)	CU NIPDAU CU SN	Level-1-260C-UNLIM	-40 to 85	MAX3243I	Samples
MAX3243IDWRE4	ACTIVE	SOIC	DW	28	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	MAX3243I	Samples
MAX3243IDWRG4	ACTIVE	SOIC	DW	28	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	MAX3243I	Samples
MAX3243IPW	ACTIVE	TSSOP	PW	28	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	MB3243I	Samples
MAX3243IPWR	ACTIVE	TSSOP	PW	28	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	MB3243I	Samples
MAX3243IPWRE4	ACTIVE	TSSOP	PW	28	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	MB3243I	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

24-Aug-2018

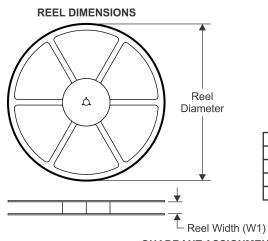
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

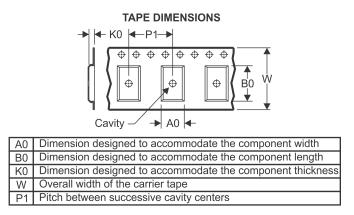
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF MAX3243 :

• Enhanced Product: MAX3243-EP

NOTE: Qualified Version Definitions:


• Enhanced Product - Supports Defense, Aerospace and Medical Applications

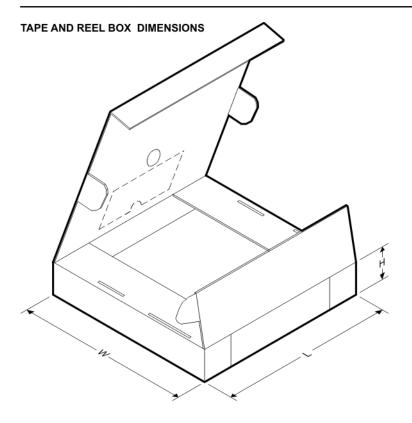

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

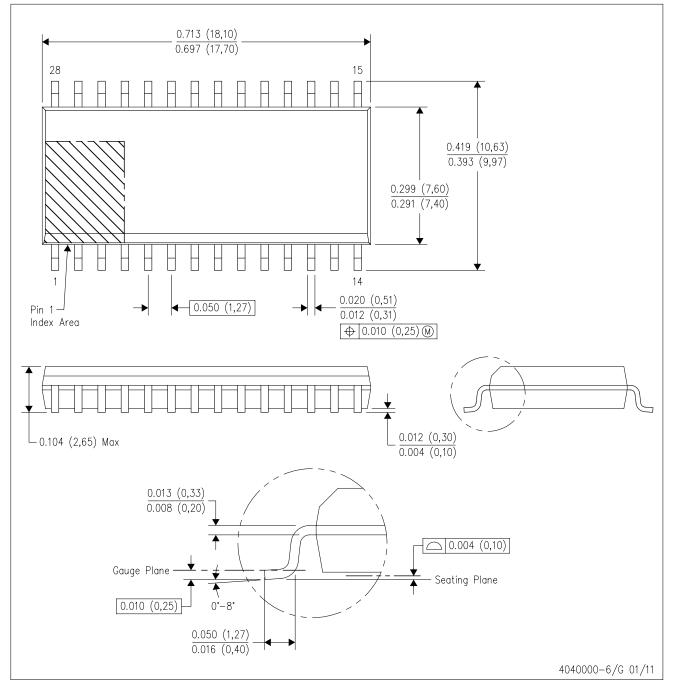

All dimensions are nominal					1							
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
MAX3243CDBR	SSOP	DB	28	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
MAX3243CDWR	SOIC	DW	28	1000	330.0	32.4	11.35	18.67	3.1	16.0	32.0	Q1
MAX3243CPWR	TSSOP	PW	28	2000	330.0	16.4	6.9	10.2	1.8	12.0	16.0	Q1
MAX3243IDBR	SSOP	DB	28	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
MAX3243IDWR	SOIC	DW	28	1000	330.0	32.4	11.35	18.67	3.1	16.0	32.0	Q1
MAX3243IDWRG4	SOIC	DW	28	1000	330.0	32.4	11.35	18.67	3.1	16.0	32.0	Q1
MAX3243IPWR	TSSOP	PW	28	2000	330.0	16.4	6.9	10.2	1.8	12.0	16.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

15-Jul-2018



*All dimensions are nominal

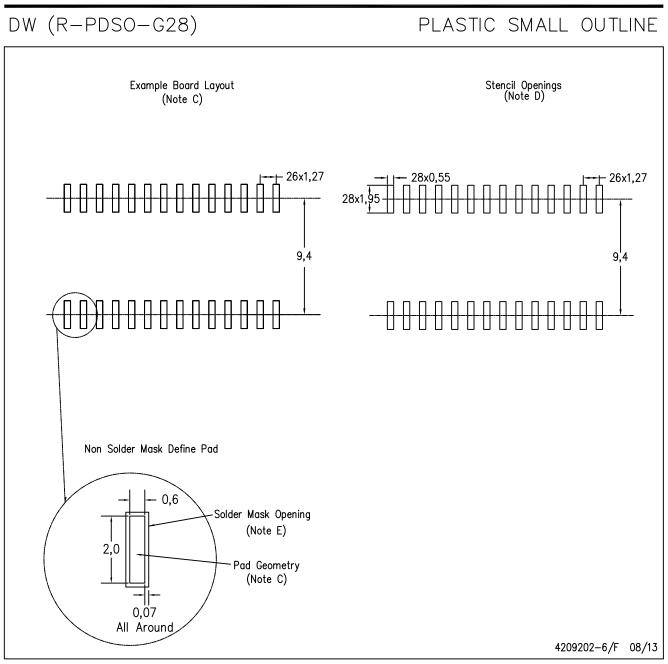
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
MAX3243CDBR	SSOP	DB	28	2000	367.0	367.0	38.0
MAX3243CDWR	SOIC	DW	28	1000	367.0	367.0	55.0
MAX3243CPWR	TSSOP	PW	28	2000	367.0	367.0	38.0
MAX3243IDBR	SSOP	DB	28	2000	367.0	367.0	38.0
MAX3243IDWR	SOIC	DW	28	1000	367.0	367.0	55.0
MAX3243IDWRG4	SOIC	DW	28	1000	367.0	367.0	55.0
MAX3243IPWR	TSSOP	PW	28	2000	367.0	367.0	38.0

DW (R-PDSO-G28)

PLASTIC SMALL OUTLINE

NOTES:

A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.

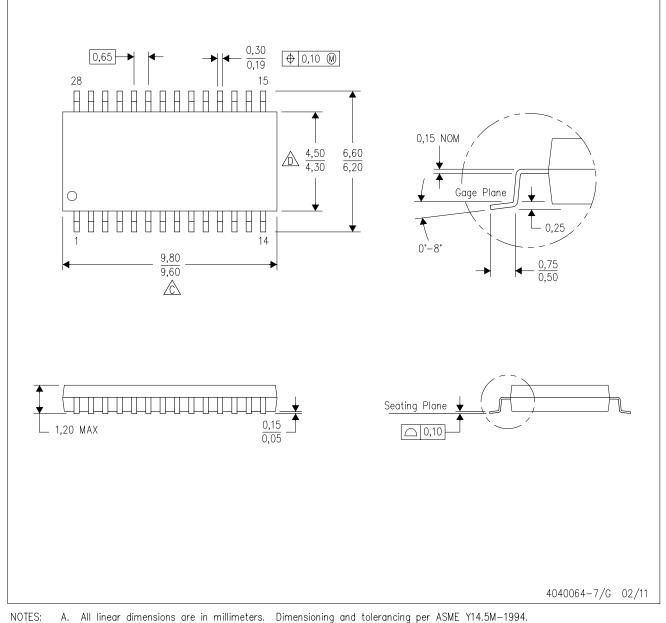

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-013 variation AE.

LAND PATTERN DATA

NOTES:

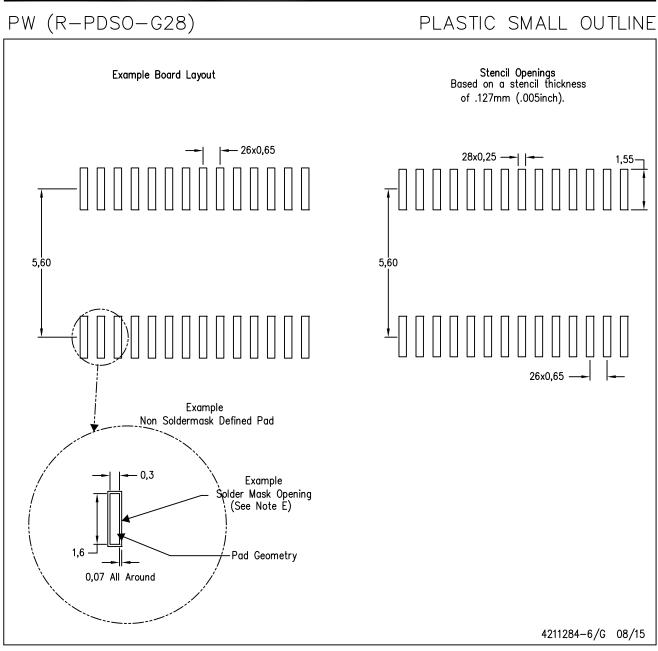

A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Refer to IPC7351 for alternate board design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

PW (R-PDSO-G28)

PLASTIC SMALL OUTLINE

All finited dimensions die in finite cers. Dimensioning e
 B. This drawing is subject to change without notice.


Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.

Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.

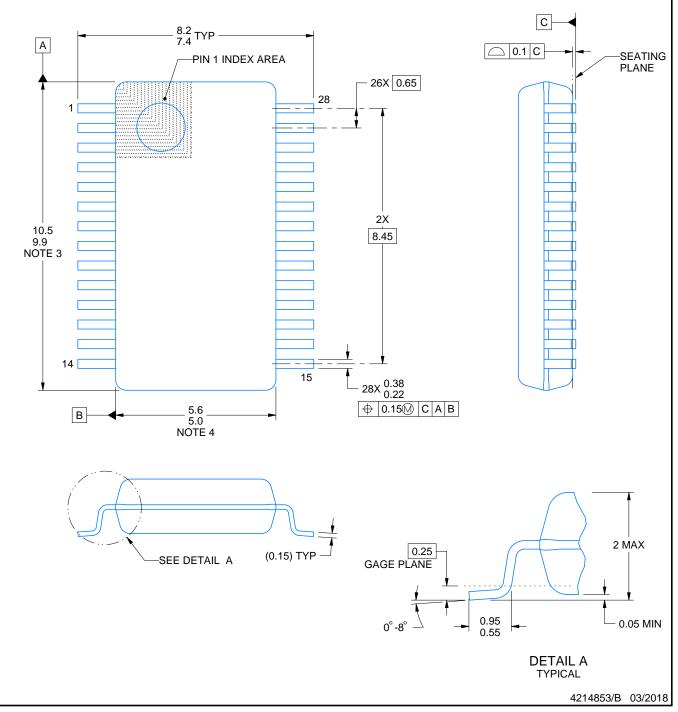
E. Falls within JEDEC MO-153

LAND PATTERN DATA

NOTES: All linear dimensions are in millimeters. Α.

- B. This drawing is subject to change without notice.
 C. Publication IPC-7351 is recommended for alternate design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.

E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.


DB0028A

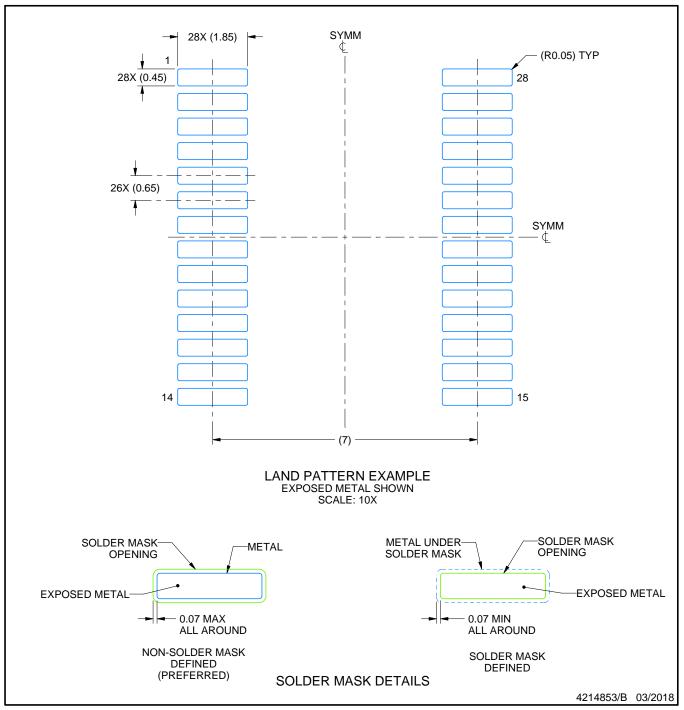
PACKAGE OUTLINE

SSOP - 2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-150.



DB0028A

EXAMPLE BOARD LAYOUT

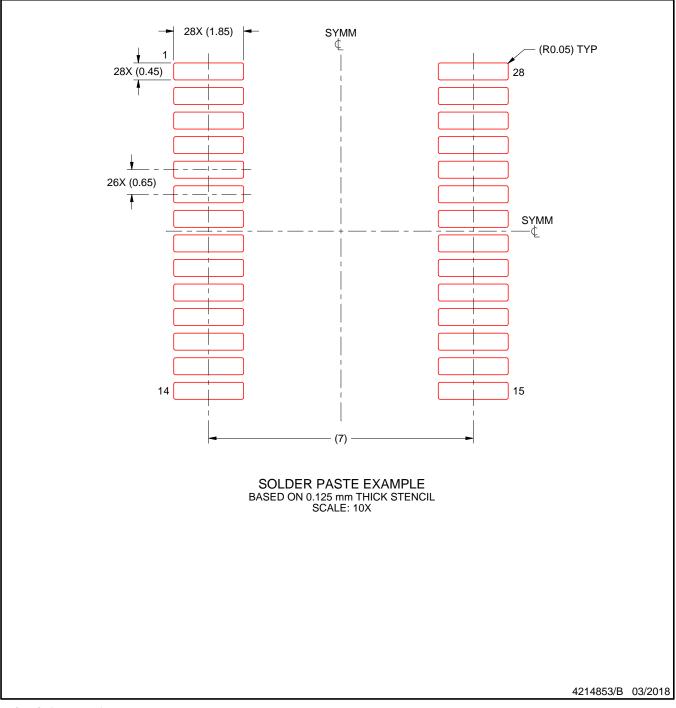
SSOP - 2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DB0028A

EXAMPLE STENCIL DESIGN

SSOP - 2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2018, Texas Instruments Incorporated