MOS 65536-BIT DYNAMIC RANDOM ACCESS MEMORY MB 8266A-10 MB 8266A-12 MB 8266A-15 ### 65.536-BIT DYNAMIC RANDOM ACCESS MEMORY The Fujitsu MB 8266A is a fully decoded, dynamic random access memory organized as 65,536 one-bit words. The design is optimized for high-speed, high performance applications such as mainframe memory, buffer memory, peripheral storage and environments where low power dissipation and compact layout is required. Multiplexed row and column address inputs permit the MB 8266A to be housed in a standard 16 pin DIP and 18 pad LCC. Pin-outs conform to the JEDEC approved pin out. Additionally, the MB 8266A offers new functional enhancements that make it more versatile than previous dynamic RAMs. "CAS-before-RAS" refresh provides an on-chip refresh capability that is acceptable upward to 256K dynamic RAMs, as pin 1 is left no-connect. The MB 8266A also features "Nibble Mode" which allows high speed serial access to up to 4 bits of data. The MB 8266A is fabricated using silicon gate NMOS and Fujitsu's advanced Double-Layer Polysilicon process. This process, coupled with single-transistor memory storage cells, permits maximum circuit density and minimal chip size. Dynamic circuitry is employed in the design, including the sense amplifiers. Clock timing requirements are non-critical, and power supply tolerance is very wide. All inputs and output are TTL compatible. - 65,536 x 1 RAM, 16 pin DIP/18 pad LCC - Silicon-gate, Double Poly NMOS, single transistor cell - Row access time. 100 ns max (MB 8266A-10) 120 ns max (MB 8266A-12) 150 ns max (MB 8266A-15) Cycle time, 190 ns min (MB 8266A-10) 230 ns min (MB 8266A-12) 260 ns min (MB 8266A-15) Nibble cycle time, 60 ns min (MB 8266A-10) 70 ns min (MB 8266A-12) 90 ns min (MB 8266A-15) - Single +5V Supply, ±10% tolerance - Low power (active) 275 mW max (MB 8266A-10) 248 mW max (MB 8266A-12) 220 mW max (MB 8266A-15) 25 mW standby (max) - 2 ms/128 refresh cycles - CAS-before-RAS, Hidden and RAS-only refresh capability - Common I/O capability using Early Write operation - Output unlatched at cycle end allows two-dimensional chip - Read-Modify-Write capability - On-chip latches for Addresses and Data-in - t_{AR}, t_{WCR}, t_{DHR} are eliminated - Standard 16-pin Ceramic (Cerdip) DIP: Surfix-Z Standard 16-pin Plastic DIP: Surfix-P Standard 18-pad Ceramic LCC: Surfix-TV ### ABSOLUTE MAXIMUM RATINGS (See NOTE) | Rating Voltage on any pin relative to V _{SS} | | Symbol | Value | Unit | | |---|---------|-----------|-------------|------|--| | | | VIN, VOUT | -1 to +7 | V | | | Voltage on V _{CC} supply | | Vcc | -1 to +7 | V | | | | Ceramic | | -55 to +150 | - °c | | | Storage temperature | Plastic | TSTG | -55 to +125 | 7 - | | | Power dissipation | | PD | 1.0 | W | | | Short circuit output current | | | 50 | mA | | NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. ## CAPACITANCE (TA = 25°C) | Parameter | Symbol | Тур | Max | Unit | |---|------------------|-----|-----|------| | Input Capacitance A ₀ ~ A ₇ , D _{IN} | C _{IN1} | | 5 | ρF | | Input Capacitance RAS, CAS, WE | C _{IN2} | | 8 | pF | | Output Capacitance D _{OUT} | Соот | | 7 | pF | # RECOMMENDED OPERATING CONDITIONS (Referenced to V_{SS}) | Parameter | Symbol | Min | Тур | Max | Unit | Operating
Temperature | |--------------------|------------------------------------|----------|----------|----------|--------|--------------------------| | Supply Voltage | V _{CC}
V _{SS} | 4.5
0 | 5.0
0 | 5,5
0 | v
v | | | Input High Voltage | V _{iH} | 2.4 | | 6.5 | ٧ | 0°C to +70°C | | Input Low Voltage | V ₁ L* | -1.0 | | 0.8 | ٧ | | Note *: The device can withstand undershoots to the -2V level with a pulse width of 20 ns. # DC CHARACTERISTICS (Recommended operating conditions unless otherwise noted.) | Parameter | | Symbol | Min | Max | Unit | |--|-------------|------------------------------------|-----|-----|------| | OPERATING CURRENT* | MB 8266A-10 | | | 50 | | | Average power supply current | MB 8266A-12 | I _{CC1} | | 45 | mA | | $(\overline{RAS}, \overline{CAS} \text{ cycling; } t_{RC} = \min)$ | MB 8266A-15 | | | 40 | | | STANDBY CURRENT Standby Power supply current ($\overline{RAS} = \overline{CAS} = V_1$ | н) | I _{CC2} | | 4.5 | mA | | REFRESH CURRENT 1* | MB 8266A-10 | | | 38 | | | Average power supply current | MB 8266A-12 | l _{cc3} | | 35 | mA | | $(\overline{CAS} = V_{IH}, \overline{RAS} \text{ cycling; } t_{RC} = \min)$ | MB 8266A-15 | | | 31 | | | NIBBLE MODE CURRENT* | MB 8266A-10 | | | 21 | | | Average power supply current $(\overline{RAS} = V_{IL}, \overline{CAS} \text{ cycling; } t_{NC} = \text{min})$ | MB 8266A-12 | I _{CC4} | | 21 | mA | | | MB 8266A-15 | | | 21 | | | REFRESH CURRENT 2 * | MB 8266A-10 | | | 42 | | | Average power supply current | MB 8266A-12 | I _{CC5} | | 38 | mA | | (RAS cycling, CAS-before-RAS) | MB 8266A-15 | | | 34 | | | INPUT LEAKAGE CURRENT Input leakage current, any input $(0 \le V_{IN} \le 5.5 V_{CC} = 5.5 V, V_{SS} = 0 V$, all other pins not test = (0.5×10^{-5}) | | l _{I(L)} | -10 | 10 | μА | | OUTPUT LEAKAGE CURRENT (Data out is disabled, $0V \le V_{OUT} \le 5.5V$) | | l _{O(L)} | -10 | 10 | μΑ | | OUTPUT LEVELS Output high voltage ($I_{OH} = -5mA$) Output low voltage ($I_{OL} = 4.2mA$) | | V _{OH}
V _{OL} | 2.4 | 0.4 | V | Note *: I_{CC} is dependent on output loading and cycle rates. Specified values are obtained with the output open. # **AC CHARACTERISTICS** (Recommended operating conditions unless otherwise noted.) NOTES 1.2.3 | | Symbol | MB 8266A-10 | | MB 8266A-12 | | MB 8266A-15 | | Unit | |---|------------------|-------------|-------|-------------|-------|-------------|-------|-------| | Parameter | | Min | Max | Min | Max | Min | Max | Oille | | Time between Refresh | t _{REF} | | 2 | | 2 | | 2 | ms | | Random Read/Wire Cycle Time | t _{RC} | 190 | | 230 | | 260 | | ns | | Read-Write Cycle Time | t _{RWC} | 230 | | 265 | | 280 | | ns | | Access Time from RAS 4 6 | t _{RAC} | | 100 | | 120 | | 150 | ns | | Access Time from CAS 5 6 | t _{CAC} | | 50 | | 60 | | 75 | ns | | Output Buffer Turn Off Delay | t _{OFF} | 0 | 30 | 0 | 35 | 0 | 40 | ns | | Transition Time | t _T | 3 | 50 | 3 | 50 | 3 | 50 | ns | | RAS Precharge Time | t _{RP} | 90 | | 100 | | 100 | | ns | | RAS Pulse Width | tRAS | 100 | 10000 | 120 | 10000 | 150 | 10000 | ns | | RAS Hold Time | t _{RSH} | 50 | | 60 | | 75 | | ns | | CAS Precharge Time | t _{CP} | 40 | | 50 | | 60 | | ns | | CAS Pulse Width | t _{CAS} | 40 | 10000 | 60 | 10000 | 75 | 10000 | ns | | CAS Hold Time | t _{CSH} | 100 | | 120 | | 150 | | ns | | RAS to CAS Delay Time 7 3 | t _{RCD} | 20 | 50 | 20 | 60 | 25 | 75 | ns | | CAS to RAS Set Up Time | t _{CRS} | 30 | | 30 | | 30 | | ns | | Row Address Set Up Time | t _{ASR} | 0 | | 0 | | 0 | | ns | | Row Address Hold Time | t _{RAH} | 10 | | 10 | | 15 | | ns | | Column Address Set Up Time | t _{ASC} | 0 | | 0 | | 0 | | ns | | Column Address Hold Time | tcah | 15 | | 15 | | 20 | | ns | | Read Command Set Up Time | tRCS | 0 | | 0 | | 0 | | ns | | Read Command Hold Time Referenced To CAS 10 | tRCH | 0 | | 0 | | 0 | | ns | | Read Command Hold Time Referenced To RAS | tarn | 20 | | 20 | | 20 | l | ns | | Write Command Set Up Time | twcs | 0 | | 0 | | 0 | | ns | | Write Command Hold Time | t _{wch} | 20 | | 25 | | 30 | | ns | | Write Command Pulse Width | t _{wP} | 20 | | 25 | | 30 | | ns | | Write Command to RAS Lead Time | t _{RWL} | 35 | | 40 | | 45 | | ns | | Write Command to CAS Lead Time | t _{CWL} | 35 | | 40 | | 45 | | ns | | Data In Set Up Time | t _{DS} | 0 | | 0 | | 0 | | ns | | Data In Hold Time | t _{DH} | 20 | | 25 | | 30 | | ns | | CAS to WE Delay | t _{CWD} | 40 | | 50 | | 60 | | ns | | RAS to WE Delay | t _{RWD} | 90 | | 110 | | 120 | | ns | ## **AC CHARACTERISTICS** (Recommended operating conditions unless otherwise noted.) NOTES 1,2,3 | | Symbol | MB 8266A-10 | | MB 82 | 66A-12 | MB 8266A-15 | | Unit | |--|--------------------|-------------|-----|-------|--------|-------------|-----|------| | Parameter NOTES | | Min | Max | Min | Max | Min | Max | Oint | | CAS Set Up Time Referenced to RAS (CAS-before-RAS) | t _{FCS} | 20 | | 25 | | 30 | | ns | | CAS Hold Time Referenced to RAS (CAS-before-RAS) | t _{FCH} | 20 | | 25 | | 30 | | ns | | RAS Precharge to CAS Hold Time (Refresh Cycles) | tRPC | 20 | | 20 | | 20 | | ns | | Nibble Mode Read/Write Cycle Time | t _{NC} | 60 | | 70 | | 90 | | ns | | Nibble Mode Read-Write Cycle Time | t _{NRWC} | 75 | | 90 | | 120 | | ns | | Nibble Mode Access Time | t _{NCAC} | | 25 | | 30 | | 40 | ns | | Nibble Mode CAS Pulse Width | t _{NCAS} | 25 | | 30 | | 40 | | ns | | Nibble Mode CAS Precharge Time | t _{NCP} | 25 | | 30 | | 40 | | ns | | Nibble Mode Read RAS Hold Tim | t _{NBRSH} | 25 | | 30 | | 40 | | ns | | Nibble Mode Write RAS Hold Time | t _{NWRSH} | 35 | | 40 | | 45 | | ns | | Nipple Mode Write Command Set Up Tim | t _{NWCS} | 0 | | 0 | | 0 | | ns | | Nibble Mode Write Command to CAS Lead Time | t _{NCWL} | 20 | | 25 | | 35 | | ns | | Nibble Mode CAS to WE Delay | t _{NCWD} | 15 | | 20 | | 30 | | ns | | Refresh Counter Test Cycle Time | t _{RTC} | 300 | | 350 | | 405 | | ns | | Refresh Counter Test RAS Pulse Width | tTRAS | 200 | | 240 | | 295 | | ns | #### Notes: - An initial pause of 200 μs is required after power up. And then several cycles (to which any 8 cycles to perform refresh are adequate) are required before proper device operation is achieved. - If internal refresh counter is to be effective, a minimum of 8 CAS-before-RAS refresh cycles are required. - 2 AC characteristics assume t_T = 5 ns. - 3 V_{IH} (min) and V_{IL} (max) are reference levels for measuring timing of input signals. Also, transition times are measured between V_{IH} (min) and V_{IL} (max.). - 4 Assumes that $t_{RCD} \le t_{RCD}$ (max). If t_{RCD} is greater than the maximum recommended value shown in this table, t_{RAC} will increase by the amount that t_{RCD} exceeds the value shown. - 5 Assumes that $t_{RCD} \ge t_{RCD}$ (max). - 6 Measured with a load equivalent to 2 TTL loads and 100 pF. - 7 Operation within the t_{RCD} (max) limit insures that - t_{RAC} (max) can be met. t_{RCD} (max) is specified as a reference point only; if t_{RCD} is greater than the specified t_{RCD} (max) limit, then access time is controlled exclusively by t_{CAC} . - 8 t_{RCD} (min) = t_{RAH} (min) + $2t_T$ (t_T =5ns) + t_{ASC} (min) - twcs, tcwD and tnwD are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only. If twcs≥twcs (min), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout entire cycle. - If t_{CWD}≥t_{CWD} (min) and t_{RWD}≥t_{RWD} (min), the cycle is a read-write cycle and data out will contain data read from the selected cell. If neither of the above sets of conditions is satisfied the condition of the data out is indeterminate. - 10 Either t_{RRH} or t_{RCH} must be satisfied for a read cycle. - 11 Refresh counter test cycle only. ### DESCRIPTION #### Address Inputs: A total of sixteen binary input address bits are required to decode any 1 of 65536 storage cell locations within the MB 8266A. Eight row-address bits are established on the input pins (Ao through A7) and latched with the Row Address Strobe (RAS). The eight column-address bits are established on the input pins and latched with the Column Address Strobe (CAS). All input addresses must be stable on or before the falling edge of RAS. CAS is internally inhibited (or "gated") by RAS to permit triggering of CAS as soon as the Row Address Hold Time (t_{RAH}) specification has been satisfied and the address inputs have been changed from row-addresses to columnaddresses. #### Write Enable: The read mode or write mode is selected with the WE input. A high on WE selectes read mode and low selectes write mode. Data input is disabled when read mode is selected. #### Data Input: Data is written into the MB 8266A during a write or read-write cycle. The later falling edge of \overline{WE} or \overline{CAS} is a strobe for the Data In (D_{IN}) register. In a write cycle, if \overline{WE} is brought low strobed by \overline{CAS} , and the set-up and hold times are referenced to \overline{CAS} . In a read-write cycle, \overline{WE} can be low after \overline{CAS} has been low and \overline{CAS} to \overline{WE} Delay Time (f_{CWD}) has been satisfied Thus D_{IN} is strobed by \overline{WE} , and set-up and hold times are referenced to \overline{WE} . #### Data Output: The output buffer is three-state TTL compatible with a fan-out of two standard TTL loads. Data-out is the same polarity as data-in. The output is in a high impedance state until CAS is brought low. In a read cycle, or read-write cycle, the output is valid after trace from the falling edge of RAS when trace (max) is satisfied, or after transistion occurs after trace (max). Data remain valid until CAS is returned to a high level. In a write cycle the identical sequence occurs, but data is not valid. #### Nibble Mode: Nibble mode allows high speed serial read, write or read-modify-write access of 2. 3 or 4 bits of data. The bits of data that may be accessed during nibble mode are determined by the 8 row addresses and the 6 column addresses. The 2 bits of column addresses (A₃, A₆) are used to select 1 of the 4 nibble bits for initial access. After the first bit is accessed by normal mode, the remaining nibble bits may be accessed by toggling CAS high then low while RAS remains low. Toggling CAS causes A6 and A3 to be incremented internally while all other address bits are held constant and makes the next nibble bit available for access. (See Table 1). If more than 4 bits are accessed during nibble mode, the address sequence will begin to repeat. If any bit is written during nibble mode, the new data will be read on any subsequent accesses. If the write operation is executed again on subsequent access, the new data will be written into the selected cell location. Using Fujitsu's nibble mode along with shift registers allows some interesting application possibilities. For instance it is possible to use an MB 8266A and a 4-bit universal shift register as a 16K x 4 dynamic RAM. This approach provides 16K granularity with the density and cost savings of 64K DRAMs. Refer to the Fig. 2 for example of 16K x 4 DRAM with MB 8266A. Another application is to use Fujitsu's MB 8266As to generate a high speed serial bit stream for video display systems. In the example shown in Fig. 3 the eight MB 8266As are operating in nibble mode with each successive byte of data loaded into its appropriate shift register. The shift registers are then unloaded serially to form a data stream with rates for this example as fast as 12ns per bit. Only 220ns are required to load the four registers. While the 32 bits are being unloaded the MB 8266As are available to the system for other functions. #### Refresh: Refresh of the dynamic memory alls is accomplished by performing a memory cycle at each of the 128 row addresses $(A_0 \sim A_6)$ at least every two milliseconds. The MB 8266A offers the following 3 types of refresh. #### RAS-only Refresh: RAS-only refresh avoids any output during refresh because the output buffer is in the high impedance state unless CAS is brought low. Strobing each of 128 row-addresses with RAS will cause all bits in each row to be refreshed. Further RAS-only refresh results in a substantial reduction in power dissipation. During RAS only refresh cycle, either V_{II} or V_{II} is permitted to A₇. ### CAS-before-RAS Refresh: CAS-before-RAS refreshing available on the MB 8266A offers an alternate refresh method. If CAS is held low for the specified period (t_{FCS}) before RAS goes to low, on chip refresh control clock generators and the refresh address counter are enabled, and an internal refresh operation takes place. After the refresh address counter is automatically incremented in preparation for the next CAS-before-RAS refresh operation. The CAS-before-RAS refresh mode eliminates the need to provide refresh address inputs. #### Hidden Refresh: Hidden refresh cycle may takes place while maintaining latest valid data at the output by extending CAS active time. In MB 8266A, hidden refresh means CAS-before-RAS refresh and the internal refresh addresses from the counter are used to refresh addresses, because CAS is always low when RAS goes to low in this mode. # CAS-before-RAS Refresh Counter Test Cycle: A special timing sequence using CASbefore-RAS counter test cycle provides a convenient method of verifying the functionality of CAS-before-RAS refresh activated circuitry. After the CAS- before-RAS refresh operation, if CAS goes to high and goes to low again while RAS is held low, the read and write operation are enabled. A memory cell address (consisting of a row address (8 bits) and a column address (8 bits)) to be accessed, can be defined as follows: - *A ROW ADDRESS Bits A₀ through A₆ are defined by the refresh counter. The other bit A₇ is set low internally. - *A COLUMN ADDRESS All the bits A₀ through A₇ are defined by latching levels on A₀ through A₇ at the second falling edge of CAS. SUGGESTED CAS-before-RAS RE-FRESH COUNTER TEST PROCE-DURE The timing, as shown in CAS-before-RAS Counter Test Cycle, is used for all the operations described as follows: - Initialize the internal refresh counter. For this operation, 8 cycles are required. - (2) Write a test pattern of lows into memory cells at a single column address and 128 row addresses. - (3) By using read-modify-write cycle, read the low written at the last operation (Step (2)) and write a new high in the same cycle. This cycle is repeated 128 times, and highs are written into the 128 memory cells. - (4) Read the highs written at the last operation (Step (3)). - (5) Compliment the test pattern and repeat the steps (2), (3) and (4). Table 1 - NIBBLE MODE ADDRESS SEQUENCE EXAMPLE | | ****** F DIT | BOW ADDRESS | COLUMN A | DD | | | | |--------------------------|------------------------|-------------|----------|----|---|---|----------------------| | SEQUENCE | NIBBLE BIT ROW ADDRESS | | | Аз | | | | | RAS/CAS (normal mode) | 1 | 10101010 | 101010 | 1 | 0 | | input addresses | | toggle CAS (nibble mode) | 2 | 10101010 | 101010 | 1 | 1 |) | | | toggle CAS (nibble mode) | 3 | 10101010 | 101010 | 0 | 0 | > | generated internally | | toggle CAS (nibble mode) | 4 | 10101010 | 101010 | 0 | 1 | | | | toggle CAS (nibble mode) | 1 | 10101010 | 101010 | 1 | 0 | J | sequence repeats | ## TYPICAL CHARACTERISTICS CURVES Fig. 5 - NORMALIZED ACCESS TIME **VS SUPPLY VOLTAGE** Fig. 7 - NORMALIZED NIBBLE ACCESS TIME vs SUPPLY VOLTAGE Fig. 9 - OPERATING CURRENT vs CYCLE RATE Fig. 6 - NORMALIZED ACCESS TIME Fig. 8 - NORMALIZED NIBBLE ACCESS TIME vs AMBIENT TEMPERATURE Fig. 10 - OPERATING CURRENT vs SUPPLY VOLTAGE Fig. 11 — OPERATING CURRENT vs AMBIENT TEMPERATURE V_{CC} = 5.5V t_{RAS} = 100ns t_{RC} = 200ns t_{RC} = 300ns T_A, AMBIENT TEMPERATURE (°C) Fig. 13 – STANDBY CURRENT vs AMBIENT TEMPERATURE V_{CC} = 5.5V V_{CC} = 5.5V T_A, AMBIENT TEMPERATURE (°C) Fig. 15 - NIBBLE MODE CURRENT vs CYCLE RATE Fig. 17 - NIBBLE MODE CURRENT vs AMBIENT TEMPERATURE Fig. 19 — REFRESH CURRENT 2 vs SUPPLY VOLTAGE Fig. 16 - NIBBLE MODE CURRENT Fig. 18 — REFRESH CURRENT 2 vs CYCLE RATE Fig. 20 - REFRESH CURRENT 2 Fig. 21 — ADDRESS AND DATA INPUT VOLTAGE VS SUPPLY VOLTAGE Fig. 22 — ADDRESS AND DATA INPUT VOLTAGE VS AMBIENT TEMPERATURE Fig. 23 — RAS, CAS AND WE INPUT VOLTAGE VS SUPPLY VOLTAGE Fig. 24 — RAS, CAS AND WE VOLTAGE VS AMBIENT TEMPERATURE Vcc = 5.0V Fig. 28 — CURRENT WAVE FORM DURING POWER UP (ON MEMORY BOARD) Fig. 29 — SUBSTRATE VOLTATE vs SUPPLY VOLTAGE (DURING POWER UP) ### PACKAGE DIMENSIONS ## PACKAGE DIMENSIONS Standard 18-pad Ceramic LCC (Surfix : -TV)